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ABSTRACT

Graphene, with its low-energy quasiparticles described by massless Dirac fermions (MDFs),

provides an unparalleled platform to study and manipulate quantum transport phenomena. In

condensed matter physics, the role of external electrostatic, magnetic, and periodic potentials in

controlling quasiparticle dynamics and generating emergent transport regimes has been exten-

sively studied and established as a key paradigm. This thesis investigates three such problems,

establishing theoretical connections to optics, superconductivity, and quantum Hall physics,

while highlighting pathways toward graphene-based device applications.

In the first part, we studied quasiparticle scattering from two-dimensional quantum dot lat-

tices using the Lippmann–Schwinger approach in the first Born approximation. We showed

that the differential scattering cross-section is governed by the Fourier transform of the poten-

tial, drawing a precise analogy to Fraunhofer diffraction in optics. Angle-resolved resistivity

revealed clear signatures of lattice configuration, defects, and moiré patterns, suggesting that

electronic transport can serve as a probe of structural features. Importantly, this constitutes

the first demonstration of fractional Fourier transform behavior in a condensed matter system,

thereby extending the scope of optical analogies to electronic scattering.

In the second part, we analyzed superconducting transport in graphene Josephson junctions

incorporating one-dimensional electrostatic and magnetic barriers. Within the Dirac – Bogoli-

ubov – de Gennes formalism, we found that such barriers act as effective refractive-index media

for MDFs, tuning the strength of Andreev reflection and modulating the Josephson current. This

establishes condensed matter analogues of reflection and refraction phenomena, while providing

a mechanism for external control of dissipationless current flow in graphene-based supercon-

ducting devices.

In the final part, we examined graphene-based superconductor–quantum Hall–superconductor

junctions under external electrostatic modulation. Employing a transfer-matrix framework, we



demonstrated that barrier-induced intermediate chiral edge states supply new current-carrying

channels and strongly influence Josephson transport. The analysis further underscored the role

of interface scattering and revealed how periodic modulation introduces additional tunability

of conductivity, emphasizing the rich interplay between superconductivity and quantum Hall

physics.

Taken together, these studies demonstrate that engineered external potentials offer a versa-

tile means of controlling MDF scattering and superconducting transport in graphene systems.

By elucidating optical analogues of electronic scattering,tuning the Josephson current in mag-

netically modulated josephson junctions and the emergence of intermediate chiral edge states

in superconductor-quantum Hall-superconductor junctions with electrostatic barrier, this thesis

advances a unified perspective on graphene transport with implications for electronic imaging,

superconducting device design, and quantum information technologies.



सार

ग्राफीन,  अपने  नि�न-ऊर्जा  �वासिपार्टिक�स के  साथ,  जिनका वर्णन ��यमानहीन डिराक फर्मिऑन 
(एमडीएफ) द्वारा किया जाता है, �वांटम परिवहन परिघटनाओं के  अ/ययन और संचालन के  लिए एक 
अद्वितीय मंच 3दान करता है। संघनित पदार्थ भौतिकी में, �वासिपार्टिकल गतिकी को नियंत्रित करने 
और आकस्मिक परिवहन �यवस्थाओं को उ?प@ करने में बाBय स्थिरवैद्युत,  चुं बकीय और आवर्ती 
विभवों की भूमिका का �यापक अ/ययन किया गया है और इसे एक 3मुख 3तिमान के  Jप में स्थापित 
किया गया है।

यह शोध ऐसी तीन समस्याओं की जाँच करता है, 3काशिकी, अतिचालकता और �वांटम हॉल भौतिकी 
के  साथ सैद्धांतिक संबंध स्थापित करते हुए, ग्रैफीन आधारित उपकरण अनु3योगों की ओर मार्ग 3शस्त 
करता है।

पहले भाग में,  हमने 3थम बोर्न सन्निकटन में लिपमैन-श्विंगर Rष्टिकोण का उपयोग करते हुए द्वि-
आयामी �वांटम बिंदु जालकों से  �वासिपार्टिकल 3कीर्णन का अ/ययन किया। हमने दिखाया कि 
विभेदक 3कीर्णन अनु3स्थ काट विभव के  फू रियर Jपांतरण द्वारा नियंत्रित होता है, जो 3काशिकी में 
फ्रौनहोफर विवर्तन के  साथ एक सटीक साRश्य 3स्तुत करता है। कोण-समाधान 3तिरोधकता ने 
जालक विVयास,  दोषों और मोइरे  पैटर्न के  स्पष्ट संके त 3कट किए,  जिससे  पता चलता है  कि 
इले�ट्रॉनिक परिवहन संरचना?मक विशेषताओं की जाँच के  Jप में कार्य कर सकता है। मह?वपूर्ण 
Jप से, यह संघनित पदार्थ तंत्र में आंशिक फू रियर Jपांतरण �यवहार का पहला 3दर्शन है , जिससे 
3काशिक साRश्यों का दायरा इले�ट्रॉनिक 3कीर्णन तक विस्तृत हो जाता है।

दूसरे  भाग में,  हमने एक आयामी स्थिरवैद्युत और चुं बकीय अवरोधों को समाहित करते हुए ग्राफीन 
जोसेफसन  जं�शनों  में  अतिचालक परिवहन  का  विश्लेषण  किया।  डिराक-बोगोलिउबोव-डी  गेनेस 
औपचारिकता के  अंतर्गत, हमने पाया कि ऐसे अवरोध एमडीएफ के  लिए 3भावी अपवर्तनांक मा/यम के  
Jप में कार्य करते हैं, एंड्रीव परावर्तन की 3बलता को समायोजित करते हैं और जोसेफसन धारा को 
संशोधित करते हैं। यह परावर्तन और अपवर्तन परिघटनाओं के  संघनित पदार्थ अनुJपों को स्थापित 
करता है,  साथ ही ग्राफीन-आधारित अतिचालक उपकरणों में अप�यय रहित धारा 3वाह के  बाBय 
नियंत्रण के  लिए एक तंत्र 3दान करता है।

अंतिम भाग में, हमने बाBय स्थिरवैद्युत मॉडुलन के  अंतर्गत ग्राफीन-आधारित अतिचालक-�वांटम हॉल-
अतिचालक संधियों का परी\ण किया। स्थानांतरण-मैट्रि�स ढाँचे का उपयोग करते हुए, हमने 3दर्शित 
किया कि अवरोध-प्रेरित म/यवर्ती किरल किनारा अवस्थाएँ नए धारा-वाहक चैनल 3दान करती हैं और 
जोसेफसन परिवहन को R^ता से 3भावित करती हैं। विश्लेषण ने इंटरफ़े स 3कीर्णन की भूमिका को 



और रेखांकित किया और बताया कि कै से आवर्ती मॉडुलन चालकता की अतिरि` ट्यूनेबिलिटी 3स्तुत 
करता है, जो अतिचालकता और �वांटम हॉल भौतिकी के  बीच समृद्ध अंतर्संबंध पर बल देता है।

कु ल मिलाकर,  ये  अ/ययन 3दर्शित  करते  हैं  कि अभियांत्रित बाBय विभव ग्राफीन 3णालियों  में 
एमडीएफ 3कीर्णन और अतिचालक परिवहन को नियंत्रित करने का एक बहुमुखी साधन 3दान करते 
हैं। इले�ट्रॉनिक 3कीर्णन के  3काशिक अनुJपों को स्पष्ट करके , चुं बकीय Jप से मॉडुलित जोसेफसन 
संधियों में जोसेफसन धारा को ट्यून करके  और स्थिरवैद्युत अवरोध वाले अतिचालक-�वांटम हॉल-
अतिचालक संधियों में  म/यवर्ती किरल किनारा अवस्थाओं के  उcव द्वारा,  यह शोध 3बंध ग्राफीन 
परिवहन पर एक एकीकृ त  Rष्टिकोण 3स्तुत  करता  है  जिसके  इले�ट्रॉनिक इमेजिंग,  अतिचालक 
उपकरण डिज़ाइन और �वांटम सूचना प्रौद्योगिकियों पर 3भाव पeता है।
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section for a single QD for differential values of β. In (c) and (d) the angle-

resolved dc-resistivity of the system parallel to the direction of propagation of

the incoming plane wave of graphene electrons is plotted under this scattering

potential rotated at an arbitrary angle. The resistivity pattern for square and

hexagonal lattices of QDs is shown in (c) and (d) for N2 = 100. The resistivity
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hexagonal lattice. In Figs. (e)-(g) we compare the process described in (a)-(d)

with the two-dimensional optical spatial frequency processor, whereas a short
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focal plane of lens 1 as shown in (f). This plane is called spatial frequency

plane [25, 26]. At the image plane in (g) the object distribution is recovered.
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Ṽ (q1)

∣

∣

∣

2
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3.8 (a) Shows the Fourier transform(FT) of the resistivity pattern for a TDQDL

with N2 = 50, ∆ = 1 and d = 70(nm). The blue cross (×) denotes the value

of amplitude corresponding to each spatial frequency (l). In the inset, we have

shown the total data. The main figures do not show the central peak to display

the smaller values. The FT of the resistivity pattern through a Gaussian filter

for the same TDQDL scattering potential with a square defect region (in the

centre) is shown in (b). In (c), we show the FT of the resistivity pattern through

a Gaussian filter for a scattering potential made with a moiré pattern of two

square TDQDL with the same lattice constant. This figure is taken from our

published work [44]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 In (a) the schematic depiction of the SGS type JJ with periodic electric and mag-

netic field. in the graphene region is shown. In the regions between the red and

blue magnetic stripes a non zero electric field (V0) is also considered. In (b) we

compare the perpendicular magnetic field profile as seen by the massless Dirac
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magnetic vector potential is shown in (c). As z0 is reduced the magnetic field

barriers become more close to a perfectly rectangular barrier. This figure is
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4.3 In (a) we show the plot of sin(αE) calculated from the Snell’s law in the RAR

(µ ≫ ε) regime for as a function of α using the red curve. In the red curve

we show the dependence of refractive index of the barrier region on α for a

barrier with κlm = 0.5 and κV = 0.25. In (b), we have plotted the values of

barrier potential (V ) and magnetic length (lm) which share the given values of

refractive index (nE) for α = π/8. Here µ and λF is the Fermi energy and the

Fermi wavelength of the barrier free region (G). In (c) we show the propagation

of electron and hole for the same barrier in the RAR regime. In the schematic

diagram, a hole following path BA undergoes RAR in the GS interface at point

A. Due to RAR, a reflected electron traces back the path of the incident hole

AB with α = 10◦ and in the barrier region(E) acts as a medium with lighter

refractive index (nE) and the electron goes through BC path with αE = 19.73◦

and then again CD path through the G region with αE = 10◦. After that at

point D, the electron undergoes RAR in the GS boundary and again reflects

back as a hole. In (d), we show the schematic diagram for the propagation of

electron and hole for the same barrier in the SAR regime. A hole from path

AB with angle α′ = 10◦ undergoes SAR in the GS interface at B and reflects

back as an electron with α = 10◦. As the refractive index of the barrier region

becomes nE ≈ 1 in the SAR regime, the reflected electron traces path BCDE

and undergoes SAR and a reflected hole travels through EF direction. The blue

solid circle denotes a hole and an electron is represented by a red solid circle.
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4.5 In (a) we show the ϕ and T dependence of the Josephson current. For a con-

stant temperature, the Josephson current is periodic in ϕ for an SG(EG)nS type

Josephson junction with n = 10 in the RAR regime. In this case, we have taken,

κlm = 2.0 and κV = 0.5. In (b) we show the Josephson Current as a function of

ϕ and the strength of magnetic barrier (κlm). We can observe from the 3D plot

that for a constant value of ϕ, the Josephson current decreases with the increas-

ing κlm. In (c) we show the cross-sectional plots to highlight this behaviour.

In (d) we combine the effect of κlm and the ratio of size of EVMP regions and

pure-graphene regions for an SG(EG)nS type Josephson junction in the same

RAR regime. In (b), (c) and (d), we have taken, κV = 0.5. In (e) we plot the

Josephson current for different values of κV with ϕ for κlm = 2.0. In all these

cases we have fixed κ = 1. This figure is taken from our published work [45]. 58
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temperature while keeping κlm = 10 and κV = 2. In (b) we show the Joseph-

son current for different values of κlm and temperature (T ) for ϕ = 2π/3 and

κV = 2 . We can observe that as we are in the short junction limit, the κlm does

not impact the Josephson current. In (c) we show the temperature dependence

of the Josephson current in the SAR regime for different values of ϕ for κV = 2

and κlm = 10. In (d) the Josephson current is plotted with r for different values

of ϕ again for the SAR regime while keeping κlm = 10 and κV = 2. In all these

cases we have taken κ=1 . This figure is taken from our published work [45]. 67
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5.2 We show the dispersion plots for the SNS junctions with barriers in the N region

for ν = 5.5 using Eq. (5.16). To show the presence of Landau levels, we set

∆0 = 2.0ℏωC . In (a), we have one barrier with width d = 2. In (b), (c) we have

taken 4 barriers in the N region with (b) V0 = 0.2, separation D = 2 and d = 1,

(c)V0 = 0.9, D = 0.5 and d = 2 and in (d) we have taken 40 barriers in the

N region with d = 0.3 and D = 0.3. The red semicircles denote the classical

electron orbit, and the blue semicircles denote the classical hole orbits. In (e)

and (f), we compare the conductivity of the SNS junction with a single barrier

in the N region with two cases of the SNS junction with w = 0 and w = 0.4

for different ranges of V0 . Here w is defined by w = 2U0/
√
ν. In this case, we

have taken ∆0 = 0.01 × ν. Here, the distance between two SN edges is taken

as 6 and the width of the barrier is taken as 1. In the inset of (e) and (f) we

show the intermediate chiral edge states which contribute to the fluctuation in

conductivity. the red and blue dot denotes their electron like or hole like nature. 78
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CHAPTER 1

Introduction

1.1 Introduction

The propagation of electron beams can be manupulated using electrostatic and magnetic field[1–

6] which works similarly as lenses do in the optical systems. This concept makes it possible to

create electrical systems inspired by components of geometrical optics, such as, lenses, mirrors,

splitters, prisms etc [4, 7–9]. In optics, transparent interfaces between materials are used to

manipulate light beams, such as lenses or prisms. For the case of ballistic electron beams in

graphene such is done by creating an interface of two regions with difference in carrier density

achieved by using electrical gates [10–12] or doping [13]. This is called a p-n junction in liter-

ature. The possibility of manipulating the electron beams in graphene using p-n junctions has

led to various milestones in nanoelectronics, such as, Veselago lenses [3, 4, 14], Dirac Fermion

microscope [2], electron beam collimation [1, 7], different types of interferometers [15–18],

gate tunable beam-splitter of massless Dirac fermions (MDF) [6], Fabry-Pérot resonator in

graphene/hBN moiré superlattice [19]. This connection to optics shows graphene’s role as a

versatile platform for exploring wave phenomena in quantum transport, making graphene an

ideal system for bridging the fields of condensed matter physics and quantum optics. Extend-

ing this optical analogy, recent studies have explored the scattering of MDFs in graphene using

various types of electromagnetic potentials. Most studies have focused on potentials that are

constant along one direction [4, 7, 11, 20–22]. New possibilities emerge when the scatter-

ing potential varies in two transverse directions. For example, in the well-known Fraunhofer

diffraction, when the observation point is significantly distant(z) from the diffracting object

dubbed in the literature as the far-field case, the field distribution at the observation plane is the

Fourier transform of the aperture function ( A(x′, y′)) [23–28]. The diffracting object is posi-

tioned at the front focal plane of a lens, resulting in the generation of a Fourier transform of the

object at the back focal plane of the lens, thereby satisfying the conditions for the Fraunhofer

approximation (z >> [x′2 + y′2]max /λ).



Another intriguing manifestation of graphene’s unique electronic properties is its integration

with superconducting systems to form Josephson junctions (JJs). In a graphene-superconductor-

graphene (SGS) junction, proximity-induced superconductivity allows for dissipation-less su-

percurrents, i.e., Josephson currents (JC) [29, 30]. Such devices played a significant role in

quantum technologies such as superconducting qubit devices [31–34], sensing small magnetic

fields [35, 36], parametric amplifiers [37, 38], single photon detection [39] etc. In mono and bi-

layer graphene, the superconducting part is made by putting a superconducting electrode on top

of graphene sheet and making use of proximity effect [30, 40, 41]. If two such closely spaced

superconducting electrodes are placed on top a graphene sheet, SGS [29, 42, 43] junction is

formed. Interface of graphene and superconductor, due to unique property of graphene, gives

another interesting difference compared to other conventional materials like two-dimensional

electron gas(2DEG), metal etc. While, in other materials there is only one type of Andreev

reflection, the electron-hole conversion process, dubbed as retro Andreev reflection(RAR). In

RAR, the reflected hole (electron) traces back the path of incident electron (hole). In graphene,

we see another type of Andreev reflection, called specular Andreev reflection(SAR).

Motivated by these, in this thesis we present three different case studies of scattering of

massless Dirac fermions in graphene in three graphene based structures. Through studying the

electron transport we try to analyze the effect of different types of scatterers in three different

systems. In the first problem, addressed in the third chapter of this thesis, by using the similarity

of scattering of massless Dirac fermions in graphene and Fraunhofer diffraction in optical sys-

tems, we study the properties of a electrostatic potential which acts as a scatterer for plane wave

of MDFs in graphene by analyzing the dc-resistivity [44]. In the second problem, addressed

in the fourth chapter of this thesis, we consider a series of one dimensional electrostatic scalar

potential and magnetic vector potential barriers in graphene sandwiched by proximity induced

superconducting regions on both sides. We study the effect of these barriers on the Josephson

current [45]. In the third problem, addressed in the fifth chapter of this thesis, our aim is to study

the effect of electrostatic barriers in the Andreev reflection process in strong magnetic fields. In

this case we analyze the Josephson conductivity to study the effect of such barriers. We started

with non-relativistic two-dimensional superconductor- quantum Hall-superconductor (SQHS)

junctions and showed the effect of such barriers as the presence of intermediate chiral edge

states (ICES). These ICES show significant modification to the Josephson conductivity. We

have also extended our analysis to the graphene based SQHS junctions.
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To elaborate, in the first problem, we show that the electronic analogue of the Fraunhofer

diffraction in optical systems can be realized in a fully two-dimensional (2D) scattering model,

where the scattering of such MDF takes place from a two-dimensional superlattice potential

that can be realized by creating an electrostatically defined array of quantum dots (QDs) on the

surface of single-layer graphene [46–55]. Using the first Born approximation, we show that

the differential scattering cross-section (DSC) of such potentials is proportional to the Fourier

transform of the potential profile, analogous to the intensity pattern in the back focal plane in

optical Fraunhofer diffraction [27]. However, due to Klein tunnelling and absence of back-

scattering, the scattered MDFs are mainly transmitted towards the forward direction only. This

is an uniqueness of graphene and studying scattering of graphene electrons interesting. Fur-

thermore, the cardioid-like differential scattering cross-section pattern observed for Gaussian

QDs reflects the combined effects of Mie scattering [14] and Klein tunneling [56–58], high-

lighting graphene’s unique scattering properties. We demonstrate that studying the transport

of graphene electrons through an experimentally measurable dc-resistivity, which is dependent

upon this DSC, enables the detection of properties of the scattering potential, including symme-

try, lattice configuration, lattice constant, and the size and location of defects in the scattering

potential. However, there is an interesting difference between our case and the optical case.

While in optical image processing a second lens is used to reconstruct the image, similar thing

is however not possible in our system. To overcome this limitation we have introduced another

degree of freedom, rotation angle ϕ which is the angle between the direction of propagation

of incident plane wave and the symmetry axis of the two dimensional QD lattice (TDQDL).

We show our approach and the analogous optical image processing in FIG. 1.1 We show that

by doing Fourier analysis of dc-resistivity in such systems we can extract the properties of the

external, extending graphene’s applicability to electronic image processing and pattern recog-

nition.

In the second problem, addressed in the fourth chapter of this thesis, we consider both elec-

trostatic and magnetic barriers in graphene sandwiched between two superconducting regions.

In this case, to understand the signature of the barriers we study experimentally measurable

temperature dependent Josephson current. In our proposed model [45], the magnetic barriers

that we are considering are created by highly localized magnetic fields [59–63] by putting a

ferromagnetic stripe on top of the surface of the graphene region [64, 65]. In experiments,

such metallic stripes have been made by NdFeB [64], Co [65]. They generate a strong mag-
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FIG. 1.1: (a) The schematic diagram of a plane wave (direction shown in blue arrows) of MDFs
in ballistic graphene, getting scattered by a two-dimensional array of Gaussian quan-
tum dot(QD) potentials. (b) The polar plot of the DSC for a square lattice of QDs. In
(c) the angle-resolved dc-resistivity of the system parallel to the direction of propaga-
tion of the incoming plane wave of graphene electrons is plotted under this scattering
potential rotated at an arbitrary angle. In (d) the schematic depiction of the SGS type
JJ with periodic electric and magnetic field in the graphene region is shown. In (e)
and (f) we show the propagation of electron and hole for our SGS system where only
one barrier is present in RAR and SAR domains respectively. The blue solid circle
denotes a hole and an electron is represented by a red solid circle. In (g) we show the
schematic diagram of the system we are considering. The red and blue semicircles
denote the classical electron and hole orbits. In (h) we show the conductivity of this
system, In the inset we provide the intermediate chiral edge states which contribute to
the fluctuation in conductivity. Figure (a)-(c) is taken from our published work [44],
Figure (d)-(f) is taken from our published work [45].
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netic field to create this highly inhomogeneous magnetic field, which explicitly breaks the time

reversal symmetry in the graphene region. By employing these stripes, a magnetic vector poten-

tial barrier can be created, wherein two such stripes generate strong magnetic fields of similar

magnitude but in opposing directions [66], oriented transversely to the plane of the graphene

layer. Using a fully scalable photo-lithographic process, Co based ferromagnetic layer has been

deposited in graphene based system to make this type of magnetic tunnel junction [67–69]. The

electrostatic barriers that we are considering can be created by putting a gate voltage and creat-

ing p-n junction in graphene [7, 11, 20, 70–72]. The schematic diagram of the system is shown

in FIG. 1.1 (d). We are considering array of these barriers, which can be viewed as a realization

of magnetic Kronig-Penny model [62, 73, 74], and their combined effect on the Andreev reflec-

tion by studying the Josephson current. Using the Dirac-Bogoloubov-de-Gennes(DBdG) theory

we have shown such barriers in the graphene region between two superconducting regions act

as a medium of different refractive index as compared to the barrier free region. This elec-

tronic analogue of refractive index can be tuned by changing the strength of both electrostatic

and magnetic barriers we are considering. By tuning these barriers, the dynamics electrons and

holes can be influenced which undergo Andreev reflection in two superconductor-graphene in-

terfaces on both sides of graphene regions. We have shown that this gives us another additional

control over the Josephson current. The schematic diagram for the propagation of electrons and

holes in the system in RAR and SAR regimes is shown in FIG. 1.1 (e) and (f) respectively.

In the third problem, discussed in the fifth chapter of this thesis, we study electron trans-

port in local potential barrier modulated superconductor-quantum Hall-superconductor (SQHS)

Josephson junctions. The system is similar to a S-2DEG-S type Josephson junction where the

2DEG is exposed to an uniform magnetic field and a series of electrostatic barriers. The uni-

form magnetic field[75] creates quantized Landau level states[76]. We use the transfer matrix

method to show that the local potentials in the quantum Hall regime can induce current carry-

ing intermediate chiral edge states(ICES) at electrostatic boundaries [77, 78] which impact and

alter the Josephson conductivity through such junctions. First, we used the BTK framework

[79] to calculate the transfer matrices. Using these transfer matrices, we calculated the dis-

persion to identify the intermediate chiral edge states(ICES) that appear due to the presence of

locally induces electrostatic barriers. Then using the Landauer-Buttiker formula, we calculate

the conductivity in the ballistic regime in such junctions and study the effect of barrier poten-

tials through the current carrying ICES. We have further extended our study to a periodically
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modulated SQHS JJ where a periodic potential is applied to the 2DEG regions along with the

transverse magnetic field.

We shall now provide some basic concepts which will be useful to understand the problems

addressed in the thesis and chapter-wise organization of the thesis.

1.2 Summary of the Problems Addressed

This thesis studies three scattering problems in graphene and shows its effect on the transport of

massless Dirac fermions(MDF) in graphene. For the first case, we theoretically study the scat-

tering of MDFs from a two-dimensional array of barrier potentials also called two-dimensional

quantum dot lattice(TDQDL) created by electric gates. We calculate the differential scatter-

ing cross-section using the first Born approximation and Lippmann–Schwinger formalism. We

show that the dc-resistivity depends on the rotation angle of the scattering lattice and use this

to build and electronic analogue of Fourier optics. In the second case, we study electron trans-

port in graphene in presence of one dimensional electric and magnetic barrier potentials in the

middle of two proximity induced superconducting regions. We show that the Josephson current

in this case can be modulated as a function of the strength of magnetic barrier and gate poten-

tials. In the third case, we developed a transfer matrix based theoretical framework to study the

transport in local potential barriers modulated superconductor-quantum Hall-superconductor

(SQHS) Josephson junctions (JJ). We demonstrate the presence of intermediate chiral edge

states(ICES) induced by the local potential barriers and calculate its effect on Josephson con-

ductivity in the ballistic regime using the Bogoliubov-de-Gennes (BDG) theory and Büttiker

description. This method can be further extended to graphene based SQHS JJs. To summarize,

• We have quantitatively shown the effect of lattice configuration, symmetry, lattice con-
stant, size and location of a defect in a TDQDL when it acts as a scattering potential
using the dc-resistivity. We have further extended study to show the electronic analogue
of Babinet’s principle.

• In case of an SGS junction, we have shown that the Josephson current can be significantly
tuned by putting a series of gate defined electrostatic scalar potential and magnetic vector
potential barrier and changing their strength.

• We show the effect of intermediate chiral edge states induced by the presence of local
electrostatic potential barriers in superconductor- quantum Hall-superconductor JJs on
the Josephson conductivity.
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1.3 Organization of Thesis

We have divided this thesis into six chapters. The following sections provide a summary of the

following five chapters.

In the Chapter 2 of this thesis we discuss various theoretical methods used to study the sys-

tems that will be used in the subsequent chapters of this thesis. We start with the quantum theory

of scattering using the Lippmann–Schwinger formalism. We calculate the scattering amplitude

for massless Dirac fermions (MDF). Next, we define the transition operator and calculate the

differential scattering cross-section for a given potential. These are key concepts that will be

highly useful in understanding the third chapter of the thesis. Next, we study the scattering of

massless Dirac fermions using partial wave analysis. With the help of that we then derive the

optical theorem.

Next to understand the methodology of fourth chapter of this thesis, we have given a brief

introduction to the Blonder Tinkham Klapwijk(BTK) formalism and Bogoliubov–de Gennes

(BdG) equations. As we are studying the transport in graphene based junctions in the fourth

chapter, here we show how the BdG equation is changed for the case of MDFs in graphene. We

also discuss the Andreev reflection which is the electron hole conversion process which happens

in superconducting junctions.

Later part of this chapter contains the key concepts to understand the third problem ad-

dressed in this thesis discussed in the fifth chapter. Here using the BTK formalism we show

how the BdG equation is transformed in the presence of a uniform magnetic field. Next, we

derive the dispersion and the calculation of small bias conductance for superconductor-2DEG

junctions in presence of magnetic field. We also show how this method can be extended to

graphene based junctions.

Chapter 3 is based on work reported in [44]. The similarity of movement of electrons or

charged particles subjected to electric and magnetic fields and propagation of electromagnetic

fields in dielectric medium with varied refractive index is well studied in the field of electron

optics. By studying the scattering of MDFs, which are charge carriers in graphene, we show an

analogue of Fourier Optics in an electronic system. We use Lippmann–Schwinger formalism

in the first Born approximation to show that the obtained differential scattering cross-section is

proportional to the Fourier transform of the scattering potential. This is analogous to intensity
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in the back focal plane in case of the Fraunhofer diffraction pattern [23, 27]. In the field of

optical image processing a second lens is used to create the Fourier transform of the diffrac-

tion pattern to reconstruct the image [25, 26]. But this is not possible in electron scattering.

To overcome this we have introduced another degree of freedom, rotation angle between the

direction of propagation of incident plane wave and the symmetry axis of the two-dimensional

QD lattice (TDQDL) and calculate the angle resolved dc-resistivity. We consider three pro-

totypes of TDQDL for our study (i) TDQDL with square and hexagonal lattice structure, (ii)

square and hexagonal TDQDL with defect region of different shapes and different locations

and (iii) moiré pattern of two square or hexagonal TDQDL. Doing Fourier analysis of the angle

resolved dc-resistivity of these structures we show that the spatial frequency associated with the

dc-resistivity gets filtered according to the structural changes in the TDQDL.

We discuss about work reported in [45] in Chapter 4. In this chapter we show the transport

of MDFs in graphene in presence of one dimensional electric and magnetic barrier potentials

between two proximity induced superconducting regions. The electric barriers can be created

by electrostatic gate potentials in an experimental system. The magnetic barrier that we dis-

cuss come from highly localized non-uniform magnetic field. These magnetic barriers are very

similar to magnetic tunnel junctions which are made with graphene by exposing the graphene

layer to localized pattern of strong magnetic field created by Ferromagnetic materials [67, 68,

80]. The graphene region with electrostatic and magnetic barriers work as the weak link be-

tween two proximity induces superconducting regions. We examine how the dissipation-less

supercurrent, namely the Josephson current [81, 82], that flows between two superconductors

connected by a weak link can be tuned by controlling properties of these barriers. Using the

Dirac-Bogoliubov-de-Gennes (DBDG) theory [29, 83–86], we show that the dispersion of the

MDFs get significantly altered due to the presence of these barriers in the graphene region. In

the retro Andreev reflection regime, we have shown that these barrier regions act as mediums

with modulated refrative index, which in an experimental system can be controlled by changing

the strength of both the electrostatic and magnetic barrier. These leads to significant modulation

of the Josephson current. In this chapter we show the numerically evaluated Josephson current

and its dependence on the strength of the magnetic barrier and the gate voltage and discuss the

practical applications of such controlling of Josephson currents.

In the Chapter 5 of this thesis, we study the Andreev reflection in superconductor-quantum

Hall-superconductor(SQHS) junctions in presence of local barrier potentials. In presence of

8



an uniform magnetic field, we observe the cyclotron motion of the quasi-particles [75, 87].

We develoved a transfer matrix based theoretical framework to study the effect of electrostatic

barriers in the N region on the Josephson current. Using the Bogoliubov-de-Gennes (BDG)

theory [84] we calculated the dispersions of SQHS JJs in presence of potential barriers. The

presence of potential barriers give intermediate current carrying edge states. We have also

explored the case of an non-ideal interface where a scattering potential is present at the interface

between superconductor and 2DES interface. Then, using the Büttiker description [88], we

calculate the conductivity and show the effect of these current carrying edge states. We have

also extended our formalism to a periodically modulated SQHS JJ where a periodic potential is

applied to the N regions along with the transverse magnetic field.

Chapter 6 summarizes the important results which we obtained in this thesis and discussed

the applications or future scope of research in this topic.

9



 



CHAPTER 2

Theoretical Background

In this chapter, we discuss the theoretical background necessary to understand the next

chapters of this thesis where we discuss the results obtained from the three research problems

we addressed in this thesis.

We begin by discussing the quantum theory of scattering of massless Dirac fermions(MDF)

using the Lippmann-Schwinger formalism in Sec. 2.1 which is key component of our first prob-

lem discussed in next chapter. We derive the Green’s function in graphene using the non-

relativistic Green’s function of Helmholtz’s equation. Then in Sec. 2.2 we derive the differential

scattering cross-section for a given scattering potential using the transition operator and Born

approximation. Next, we provide the partial wave analysis and show the phase shift due to the

presence of a scattering potential in Sec. 2.3. We further derive the optical theorem in Sec. 2.4.

We use these concepts extensively in the first problem discussed in the third chapter of this

thesis.

As we discuss the graphene based superconducting junctions in the second problem dis-

cussed in the fourth chapter of this thesis, here we start by showing the BTK formalism and

BDG equation in Sec. 2.5. In graphene based system we show how the BDG equation is

changed in Sec. 2.6. We derive the wavefunctions in graphene and superconductor regions.

We also discuss the Andreev reflection and two types of Andreev reflection in graphene.

In the third problem, discussed in the fifth chapter of this thesis, we discuss the supercon-

ducting junctions in presence of uniform magnetic field. The junction of quantum Hall systems

and superconductor has been studied extensively in two dimensional electron systems in [75]

and graphene systems in [86]. In the third problem addressed in this thesis, we study the effect

of electrostatic barriers in the quantum Hall systems in graphene quantum Hall junctions. To

understand that, in Sec. 2.7, we show the BdG equation in presence of uniform magnetic field.

We discuss the breaking of time reversal symmetry for the vector potential in 2DEG system

which will be used in fourth chapter and breaking of time reversal symmetry for the vector

potential in graphene which will be used in fifth chapter.



2.1 Quantum Theory of Scattering of MDFs

The Lippmann-Schwinger equation [89, 90] is used to calculate the wavefunction in the pres-

ence of a scattering potential using the wave-functions of the free Hamiltonian (H0). The

Schrödinger equation in presence of a scattering potential is

(

Ĥ0 + V̂
)

|Ψk⟩ = E |Ψk⟩ (2.1)

and the free wavefunctions are solutions of the free Schrödinger equation Ĥ0 |ϕk⟩ = E |ϕk⟩.
The free particle hamiltonian is given by H0 = vFσ · p = −iℏvFσ · ∇ and the free particle

wavefunctions are given by

ϕe
k
(r⃗) =





1

eiθk



 eik·r (2.2)

for electrons and

ϕh
k
(r⃗) =





1

−eiθk



 eik·r (2.3)

for holes with eigenvalues E = ±ℏvFk respectively. Here k is the wave vector. The desired

solution for the scattered wavefunction satisfies Eq. (2.1). It is given by

|Ψη
k
⟩ = |ϕk⟩η +

1

[EI2 − Ĥ0]
V̂ |Ψη

k
⟩ (2.4)

Here, η = e, h denotes electron and hole wavefunctions. To calculate the wavefunctions,

we make the eigenvalue slightly complex (E ± iϵ) and take the limit where the imaginary part

is ϵ→ 0.

This gives us,

∣

∣Ψη,±
k

〉

= |ϕk⟩+ Ĝ±
0 V̂

∣

∣Ψη,±
k

〉

(2.5)

where,

Ĝ±
0 = lim

ϵ→0

[

EI2 − Ĥ0 ± iϵ
]−1

. (2.6)
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Eq. (2.5) is called the Lippmann-Schwinger equation [89, 90], Ĝ±
0 is called the Green’s

function and the plus sign corresponds to the physically relevant outgoing scattered wave and

the negative sign corresponds to an incoming wave in asymptomatic region. In position repre-

sentation eq. (2.5) becomes,

Ψη,±
k

(r) = ϕη
k
(r) +

∫

d2r′G±
0 (r, r

′, E)V (r′)Ψη,±
k

(r′) (2.7)

The Green’s function G0(r, r
′, E) of this equation satisfies the matrix equation,

[EI2 −H0(r)]G0(r, r
′, E) = δ(r− r′) (2.8)

The Green’s function is calculated from the Green’s function of the Helmholtz’s equation in

2-dimension [91]. Using H0 = vFσ · p = −iℏvFσ · ∇ can write,

1

ℏ2v2F
[EI2 −H0(r)] [EI2 +H0(r)] =

(

k2 +∇2
)

I2 (2.9)

We know the Green’s function of the two dimensional Helmholtz’s equation as,

G+
H =

(

− i

4

)

H
(1)
0 (k|r− r′|)

G−
H =

(

− i

4

)

H
(2)
0 (k|r− r′|)

Here, H(1)
α (z) and H(2)

α (z) are Hankel functions of first and second kind of order α. Using these

we can write,

(k2 +∇2)I2G
±
H(r⃗, r⃗

′, E) = δ(r− r′)I2 (2.10)

Using Eq. (2.8), (2.9) and (2.10)

G+
0 (r, r

′, E) =
1

ℏ2v2F

(

− i

4

)

[EI2 − iℏvFσ · ∇]H
(1)
0 (k|r− r′|) (2.11)

G−
0 (r, r

′, E) =
1

ℏ2v2F

(

− i

4

)

[EI2 − iℏvFσ · ∇]H
(2)
0 (k|r− r′|)

If we consider only the physically relevant outgoing scattered wave then,

Ψη,+
k

(r) = ϕη
k
(r) +

∫

d2r′G+
0 (r, r

′, E)V (r′)Ψη,+
k

(r′) (2.12)
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Again, if we define an angle θ as, θ = tan−1
(

y−y′

x−x′

)

then, using the property [92] of Hankel

Function ∂xH
(1)
0 (x) +H

(1)
1 (x) = 0 we can write,

σ · ∇H(1)
o (k|r− r′|) = −





0 e−iθ

eiθ 0



 kH
(1)
1 (k|r− r′|) = −σθkH(1)

1 (k|r− r′|) (2.13)

Here, σθ =





0 e−iθ

eiθ 0





Again, in large distance limit |r− r′| → large,

H
(1)
0 (k|r− r′|) =

√

2

πk|r− r′|e
i(k|r−r′|−π

4 ) =

√

2

iπk|r− r′|e
i(k|r−r′|) (2.14a)

H
(1)
1 (k|r− r′|) =

√

2

πk|r− r′|e
i(k|r−r′|−π

2
−π

4 ) = (−i)
√

2

iπk|r− r′|e
i(k|r−r′|) (2.14b)

Again, if α is the angle between r and r
′

|r − r
′| =

√
r2 − 2rr′ cosα + r′2

= r

(

1− 2r′

r
cosα +

r′2

r2

)1/2

≈ r − r̂ · r
′ as r ≫ r′ (2.15)

For the denominator it is sufficient to take 1/|r − r
′| = 1/r. If we take η = e, then, E = ℏvFk

and using Eq. (2.11), (2.13), (2.14) and (2.15) the Green’s function can be written as [93],

G+
0 (r, r

′, E) = − 1

ℏvF

√

ik

8πr
eikre−ik′

·r′





1 e−iθ

eiθ 1



 (2.16)

Similarly, if we choose η = h, then, E = −ℏvFk, the Green’s function becomes [93],

G+
0 (r, r

′, E) =
1

ℏvF

√

ik

8πr
eikre−ik′

·r′





1 −e−iθ

−eiθ 1



 . (2.17)
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Now the asymptotic scattered wave-function can be written as [93],

Ψe,+
k

(r) = ϕe
k⃗
(r⃗) +

1√
2





1

eiθ





eikr√
r
fe−e(θ) (2.18)

Here,

fe−e(θ) = − 1

ℏvF

√

ik

2π

∫

d2r⃗′
1√
2

[

1 e−iθ

]

e−ik′
·r′V (r′)Ψe,+

k
(r′) (2.19)

2.2 Transition operator and Differential Scattering Cross Sec-

tion

The Lippmann-Schwinger equation from Eq. (2.5) can be written as n infinite series as the scat-

tered wavefunction is present in both LHS and RHS of Eq. (2.5). To calculate the wavefunction

upto a given order we have use the transition operator [90]. The transition operator is defined

as,

V̂
∣

∣Ψη,±
k

〉

= T̂ |ϕk⟩ . (2.20)

Using this definition and Eq. (2.5) we can write,

T̂ = V̂ + V̂ Ĝ±
0 V̂ + V̂ Ĝ±

0 V̂ Ĝ
±
0 V̂ + . . . (2.21)

Now, using this definition, we can write the scattering amplitude as,

fe−e(θ) = − 1

ℏvF

√

ik

2π

〈

ϕe
k′

∣

∣

∣
T̂
∣

∣

∣
ϕe
k

〉

(2.22)

and for the hole part this equation becomes,

Ψh,+
k

(r) = ϕh
k⃗
(r⃗) +

1√
2





1

−eiθ





eikr√
r
fh−h(θ) (2.23)

Where,

fh−h(θ) =
1

ℏvF

√

ik

2π

〈

ϕh
k′

∣

∣

∣
T̂
∣

∣

∣
ϕh
k

〉

(2.24)
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For the first order Born approximation we truncate the infinite series at the first term as

T̂ = V̂ . The differential scattering cross section from this scattering amplitude is calculated as

dσ
dθ

= |f(θ)|2. Near Dirac point, fh−h(θ) → 0 and fe−e(θ) → 0.

2.3 Partial Wave-Analysis of Massless Dirac Fermions

From the scattering theory the asymptotic wave-function of a particle in presence of a scattering

potential is the sum of an incident wave and a spherical wave (in 3 dimensions[94]) or a cirular

wave (in 2 dimensions[95, 96]) with a scattering amplitude f(θ). If a plain wave (with hamilto-

nian H0 = − ℏ2

2m
∇

2 ) is scattered by a scattering potential, then the scattered wave-function as

large distance can be written as[95, 96]

ψ(r) ≈ eiki·r +
eikr√
r
f(θ) [in 2-d] (2.25)

ψ(r) ≈ eiki·r +
eikr

r
f(θ) [in 3-d] (2.26)

For a relativistic free particle (H0 = βmc2 + cα · p) the asymptotic scattered wavefunction

takes form [91],

ψ(r) ≈ Use
ik·r +

∑

s′

eikr

r
f s′,s(k′,k) (2.27)

Here, c is the speed of light, m is the mass of the particle, β, α1, α2, α3 are (4× 4) matrices,

Us is a four component column vector which depends on the spin and the sign of energy of the

incident particle and f s′,s is also a four component quantity.

We will be studying Dirac Fermions in graphene systems. In the K valley of Graphene

the hamiltonian of a free particle can be written as H0 = vFσ · p where, p is the momentum

operator and (σx, σy, σz) are the Pauli spin matrices. If we use the cylindrical polar coordinate

(x = r cos(θ), y = r sin(θ)) , then [97]
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H0 = −iℏvF





0 ∂x − i∂y

∂x + i∂y 0



 = −iℏvF





0 L̂−

L̂+ 0



 (2.28)

Here, L̂± = e±iθ
(

∂r ± i
r
∂θ
)

. L̂± operator has properties[97]

L̂±
[

eimθJm(kr)
]

= ∓kei(m±1)θJm±1(kr) (2.29a)

L̂±
[

eimθYm(kr)
]

= ∓kei(m±1)θYm±1(kr) (2.29b)

Using Eq. (2.28) and (2.29), we can show that the eigenvalues of H0 are [97] ,

ψ
e,(1)
m,k (r, θ) =

1√
2
eimθ





Jm(kr)

ieiθJm+1(kr)



 (2.30)

and

ψ
e,(2)
m,k (r, θ) =

1√
2
eimθ





Nm(kr)

ieiθNm+1(kr)



 (2.31)

with eigenvalue ℏvFk and

ψ
h,(1)
m,k (r, θ) =

1√
2
eimθ





Jm(kr)

−ieiθJm+1(kr)



 (2.32)

and

ψ
h,(2)
m,k (r, θ) =

1√
2
eimθ





Nm(kr)

−ieiθNm+1(kr)



 (2.33)

with eigenvalue −ℏvFk.

Where, Jm and Nm are the Bessel and Neumann functions[92]. The positive energy solu-

tions, (E > 0, electrons) can be written as,

Ψe
k
(r) =

∞
∑

m=−∞
ψe
m,k(r, θ) (2.34)
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Here,

ψe
m,k (r, θ) = Cm

1√
2
eimθ





Jm(kr)

ieiθJm+1(kr)



+Dm
1√
2
eimθ





Nm(kr)

ieiθNm+1(kr)





=
1√
2
eimθ





{CmJm(kr) +DmNm(kr)}
ieiθ {CmJm+1(kr) +DmNm+1(kr)}



 (2.35)

The asymptotic form of Bessel and Neumann functions are [92],

Jm(kr) −−−→
r→∞

√

2

πkr
cos

(

kr − mπ

2
− π

4

)

(2.36a)

Nm(kr) −−−→
r→∞

√

2

πkr
sin

(

kr − mπ

2
− π

4

)

(2.36b)

Using Eq. (2.35) and (2.36) the asymptotic form of the scattered wave function for positive

energy particles can be written as [97],

Ψe
k
(r) =

∞
∑

m=−∞
Am (kr)1/2

1√
2
eimθ





cos
(

kr − mπ
2

− π
4
+ δm

)

ieiθ sin
(

kr − mπ
2

− π
4
+ δm

)



 (2.37)

Here, δm is the phase shift due to scattering. Now, if we choose the incident wave-functions as

an electron propagating along the x-axis then the incident wave-function can be expandend in

terms of partial waves as,

ϕe
k
=

1√
2





1

1



 eikx =
∞
∑

m=−∞

1√
2
imeimθ





Jm(kr)

Jm(kr)



 (2.38)

Similar to eq. (2.25), we can write the scattered wavefuntion for the electrons as,

Ψe
k
(r) ≈ 1√

2





1

1



 eikx +
eikr√
2r
f(θ)





1

eiθ



 (2.39)

In TABLE 2.1, we compare the partial wave analysis in the scattering process of three

dimensional non relativistic (NR) system [89, 90], two-dimensional non relativistic system [95,

96] and massless Dirac fermions (MDF) in graphene [44, 93, 97, 98].
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Table 2.1: Comparison of scattering in three dimensional non relativistic (NR) system [89,
90], two-dimensional non relativistic system [95, 96] and massless Dirac fermions
(MDF) in graphene [44, 97]:

3-dimensional NR system 2-dimensional NR system MDFs in graphene

Scattered wavefunction
Ψe

k(r)−→r→∞

eikx +
eikr

r
f(θ)

Scattered wavefunction
Ψe

k(r)−→r→∞

eikx +
eikr√
r
f(θ)

Scattered wavefunction
Ψe

k(r)−→r→∞

1√
2









1

1









eikx +
eikr√
2r

f(θ)









1

eiθ









Scattering amplitude
f(θ) =

1

k

∞
∑

l=0

(2l + 1)eiδlPl(cosθ)

Scattering amplitude
f(θ) =
√

2i

πk

∞
∑

m=−∞
eimθeiδm sin(δm)

Scattering amplitude
f(θ) =
√

2i

πk

∞
∑

m=−∞
eimθeiδm sin(δm)

f(θ) ∝ 1
k

f(θ) ∝ 1√
k

f(θ) ∝ 1√
k

Putting Eq. (2.37) and (2.38) on both sides of Eq. (2.39) we obtain [97],

Am =

√

2

π
imeiδm , (2.40)

f(θ) =

√

2i

πk

∞
∑

m=−∞
eimθeiδm sin(δm) (2.41)

If we choose our incident particle as a hole propagating along the x axis, then the partial

wave expansion of the incident wave and asymptotic scattered wave-function are,

ϕh
k
=

1√
2





1

−1



 eikx =
∞
∑

m=−∞

1√
2
imeimθ





Jm(kr)

−Jm(kr)



 (2.42)

Ψh
k
(r) =

∞
∑

m=−∞
Am (kr)1/2

1√
2
eimθ





cos
(

kr − mπ
2

− π
4
+ δm

)

−ieiθ sin
(

kr − mπ
2

− π
4
+ δm

)



 (2.43)
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In terms of the scattering amplitude, the scattered wave-function for a hole is,

Ψh
k
(r) ≈ 1√

2





1

−1



 eikx +
eikr√
2r
f(θ)





1

−eiθ



 . (2.44)

The scattering amplitude is same as the scattering of an electron. Here, we have determined

the scattered wave-functions in terms of scattering phase shift. This phase shift depends on the

scattering potential.

2.4 Optical Theorem

The optical theorem for non-relativistic case is shown in [90] and non-relativistic two dimen-

sional cases in [95, 96]. In the first problem discussed in the third chapter of this thesis we

discuss scattering of massless Dirac fermions. In this section, we will derive the optical the-

orem for the mass-less Dirac fermions in Graphene. The probability current operator in the

Direction r̂ is Ĵ = r̂.σ⃗ =





0 e−iθ

eiθ 0





The probability current density of the scattered electrons at large distance in the direction r̂

is

Jscat =
e−ikr

√
2r
f ∗(θ)

[

1 e−iθ

]





0 e−iθ

eiθ 0



× eikr√
2r
f(θ)





1

eiθ



 =
1

r
|f(θ)|2 (2.45)

For the incident electron the probability current density in the incident direction x̂ is,

Jinc =
1√
2

[

1 1
]

e−ikx





0 1

1 1





1√
2





1

1



 eikx = 1 (2.46)

The differential scattering cross section can be calculated as,
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dσ

dθ
dθ =

|Jscat|rdθ
|Jinc|

= |f(θ)|2dθ (2.47)

So the differential scattering cross section is λ(θ) = dσ
dθ

= |f(θ)|2

Using Eq. (2.40), the total cross section can be calculated as,

λ =

∫ 2π

0

λ(θ)dθ =
4

k

∞
∑

n=−∞
sin2(δn) (2.48)

Using Eq. (2.40) and (2.48) we get the optical theorem,

λ = −2
(π

k

)1/2

[Refk(0)− Imfk(0)] (2.49)

2.5 BTK formalism and BDG Equation

The dynamics of charge carriers in a junction involving proximity induced superconductor(S)

and other materials such as normal metal(N) or graphene(G) is given by the Bogoliubov-de-

Gennes equation [29, 83–86, 99]. This equation will be helpful to understand the second and

third problem addressed in this thesis and discussed in the fourth and fifth chapter of this thesis.

the equation is given by





H− µ ∆(T )

∆∗(T ) µ− T HT −1









Ψe

Ψh



 = ε





Ψe

Ψh



 (2.50)

Here H is Hamiltonian for the charge carriers in the given material, µ is the fermi energy,

∆(T ) is the temperature dependent superconducting pair potential which couples the time re-

versed electron and hole states, ε is the excitation energy, Ψe and Ψh represent the electron and

hole excitations and T is the time reversal operator. For 2DEG, the time reversal symmetry

operator takes form T = C. For graphene, the time reversal operator becomes, [100],

T =





0 σz

σz 0



 C. (2.51)
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2.6 BdG Equation in Graphene Based Supersonducting Junc-

tions

The superconducting junctions are made with a graphene sheet using proximity induced super-

conductivity. Some part of the graphene sheet is covered by superconducting electrodes. In

such junctions, the charge carriers follow Dirac equation, H = p · σ = −iℏc(σx∂x + σy∂y).

Here, c = 1
300

× speed of light. The time reversal operator becomes [100],

T =





0 σz

σz 0



 C. (2.52)

C is the operator of complex conjugation. In the absence of magnetic field, the Hamiltonian is

time reversal invariant, THT −1 = H This makes the BdG equations[83],





p · σ − µ ∆(T )

∆∗(T ) µ− p · σ









Ψe

Ψh



 = ε





Ψe

Ψh



 (2.53)

2.6.1 Solutions in graphene

In the graphene region of the junction the DBdG equation Eq. (2.53) becomes,





p.σ − µ 0

0 µ− p.σ









Ψe

Ψh



 = ε





Ψe

Ψh



 , (2.54)

If we take the electron part of the wavefunction , Ψe =
[

u1 u2

]T

and hole part of the

wavefunction Ψh =
[

v1 v2

]T

, then this becomes,

















−µ −iℏc(∂x − i∂y) 0 0

−iℏc(∂x + i∂y) −µ 0 0

0 0 µ iℏc(∂x − i∂y)

0 0 iℏc(∂x + i∂y) µ

































u1

u2

v1

v2

















= ε

















u1

u2

v1

v2

















,

(2.55)

We can separate the electron part of the wavefunction Ψe and hole part of the wavefunction
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Ψh in Eq. (4.30). The solutions are,

u1,2 = eiqy+ikxx × constant (2.56a)

v1,2 = eiqy+ikxx × constant (2.56b)

where q is transverse and kx = ±k is longitudinal wave vector.

k =

[

ε+ µ

ℏc

]

√

1−
(

ℏcq

ε+ µ

)2

(2.57)

Using this we have four solutions of the wavefunctions in the graphene region.

ψ+
e
=
eiqy+ikx

√
cosα

















e−
iα
2

e
iα
2

0

0

















, (2.58)

ψ−
e
=
eiqy−ikx

√
cosα

















e
iα
2

−e− iα
2

0

0

















, (2.59)

ψ+
h
=
eiqy+ik′x

√
cosα′

















0

0

e−
iα′

2

−e iα′

2

















, (2.60)

ψ−
h
=
eiqy−ik′x

√
cosα′

















0

0

e
iα′

2

e−
iα′

2

















. (2.61)

Where,
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α = angle of incidence of electron = sin−1

(

ℏcq

ε+ µ

)

, (2.62a)

α′ = angle of reflection of hole = sin−1

(

ℏcq

ε− µ

)

, (2.62b)

q = transverse wave vector, (2.62c)

k = longitudinal wave vector of electron =
ε+ µ

ℏc
cosα, (2.62d)

k′ = longitudinal wave vector of hole =
ε− µ

ℏc
cosα′. (2.62e)

The factors 1√
cosα

and 1√
cosα′

ensure that all these four states carry same current. The current

operator is Ĵ = ℏ

2mi

(

Ψ† ∂Ψ
∂x

−Ψ∂Ψ†

∂x

)

.

2.6.2 Solutions in Superconductor

In the superconducting region(S) DBdG equation Eq. (2.53) becomes,





p.σ − Uo − µ ∆oe
iϕ

∆oe
−iϕ Uo + µ− p.σ









Ψe

Ψh



 = ε





Ψe

Ψh



 , (2.63)

Here, U0 is an electrostatic potential applied in the S region. This can be adjusted by gate

voltage or doping and ϕ is the superconducting phase. The four solutions of this equation for a

given energy ε and transverse wave vector q are

ψ1 = eiqy+ikox−kix

















eiβ

eiβ+iγ

e−iϕ

e−iϕ+iγ

















, (2.64)

ψ2 = eiqy+ikox+kix

















e−iβ

e−iβ+iγ

e−iϕ

e−iϕ+iγ

















, (2.65)
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ψ3 = eiqy−ikox−kix

















e−iβ

−e−iβ−iγ

e−iϕ

−e−iϕ−iγ

















, (2.66)

ψ4 = eiqy−ikox+kix

















eiβ

−eiβ−iγ

e−iϕ

−e−iϕ−iγ

















, (2.67)

Here,

β =







cos−1
(

ε
∆o

)

if ε < ∆o

−i cosh−1
(

ε
∆o

)

if ε > ∆o

(2.68)

γ = sin−1

[

ℏcq

Uo + µ

]

(2.69)

ko =

√

(

Uo + µ

ℏc

)2

− q2 (2.70)

ki =
(Uo + µ)∆o

ℏ2c2ko
sin β (2.71)

Now as we always have |q| ≤ µ
ℏc

and if we assume Uo ≫ µ, ε then, γ → 0 , ko → Uo

ℏc
and

ki → ∆o

ℏc
sin β. In these limit the four basis states[83] in S becomes

ψ1 = eiqy+ikox−kix

















eiβ

eiβ

e−iϕ

e−iϕ

















, (2.72)

ψ2 = eiqy+ikox+kix

















e−iβ

e−iβ

e−iϕ

e−iϕ

















, (2.73)
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ψ3 = eiqy−ikox−kix

















e−iβ

−e−iβ

e−iϕ

−e−iϕ

















, (2.74)

ψ4 = eiqy−ikox+kix

















eiβ

−eiβ

e−iϕ

−e−iϕ

















, (2.75)

2.6.3 Andreev Reflection

Superconductor Superconductor

Retro Andreev Reflection Specular Andreev Reflection

(a) (b)

e e
h

h

FIG. 2.1: Schematic diagram of (a) retro Andreev reflection and (b) specular Andreev reflec-
tion. The arrows denote the direction of velocity. The red circle denotes negatively
charged electron and blue circle denotes positively charged hole.

Andreev reflection is a process at a normal metal–superconductor interface in which an in-

coming electron from the normal side is retroreflected as a hole, while a Cooper pair is transmit-

ted into the superconductor[101]. This mechanism ensures charge and momentum conservation

at the boundary and plays a central role in transport phenomena in hybrid superconducting

systems. In conventional metals, Andreev reflection is called retro Andreev reflection(RAR),

where the reflected hole retraces the path of the incoming electron. In graphene, however, the

linear Dirac-like dispersion allows the reflected hole to occupy the valence band instead of the

conduction band. This leads to specular Andreev reflection(SAR), where the hole is reflected at

a positive angle, symmetric to the incident electron with respect to the interface normal, rather

than retracing its trajectory[83]. The coexistence of retro and specular Andreev reflection makes

graphene-based junctions fundamentally different from normal metals, enabling richer transport

behavior and unique quantum interference effects. The incident and reflected angles α and α′

are defined in Eq. (2.62a) and (2.62b). In the range µ≪ ε, we have α = α′. SAR dominates in

25



this regime. Again in the range µ≫ ε, we have α = −α′. RAR dominates in this regime.

2.7 Time Reversal Symmetry Breaking of BdG Equation in

Presence of Uniform Magnetic Field

2.7.1 Bogoliubov-de-Gennes Equation for S-2DEG

In Josephson junctions made in the non-relativistic system, the Bogoliubov-de Gennes equation

becomes[79, 84, 102, 103],





H0 − µ ∆

∆∗ µ−H∗
0









Ψe

Ψh



 = E





Ψe

Ψh



 (2.76)

Here, H0 is the single electron Hamiltonian, ∆ is the pair potential, and µ is the Fermi energy.

In the presence of magnetic field B with vector potential A and external potential V (x) the

single electron hamiltonian becomes,

H0 =
1

2m
(p− eA)2 + V (x)

=
1

2m
(−iℏ∇− eA)2 + V (x)

Now,

H∗
0 =

1

2m
(iℏ∇− eA)2 + V (x)

=
1

2m
(−iℏ∇+ eA)2 + V (x)

=
1

2m
(p+ eA)2 + V (x)

This makes the BdG equation [75, 87] in NS junction as,





1
2m

(p− eA)2 + V (x)− µ ∆

∆∗ µ− 1
2m

(p+ eA)2 − V (x)









Ψe

Ψh



 = E





Ψe

Ψh



 (2.77)
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Now, seeing (2.77), we can understand that the external potential does not change sign with

respect to the momentum but the magnetic vector potential changes sign with respect to mo-

mentum in electron and hole part of the hamiltonians. This happens since the magnetic vector

potential changes sign under the time reversal[90].

2.7.2 Time Reversal Symmetry Breaking in Graphene- Superconductor

Junctions

The single particle hamiltonian graphene in the presence of an external potential V (x) is

H =





H+ 0

0 H−



 (2.78)

where, H± = −iℏvF (σx∂x±σy∂y)+V (x). The time reversal operator for this Hamiltonian

is

T =





0 σz

σz 0



C = T −1 (2.79)

Here C is the complex conjugation operator and it satisfies the equation T HT −1 = H.

In the presence of a magnetic field, the Hamiltonian from (2.78) is written in valley isotropic

basis[86] by making a unitary transformation, H = UHU † and T = UT U †. Where, U =

1
2
(τ0 + τz)⊗ σ0 +

1
2
(τ0 − τz)⊗ σx

Using this U becomes,

U =

















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

















(2.80)

This matrix satisfies U †U = I4. After the unitary transformation, the Hamiltonian be-
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comes,

H = UHU †

=











1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0





















V (x) vF (px − ipy) 0 0

vF (px + ipy) V (x) 0 0

0 0 V (x) vF (px + ipy)

0 0 vF (px + ipy) V (x)





















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0











=











V (x) vF (px − ipy) 0 0

vF (px + ipy) V (x) 0 0

0 0 V (x) vF (px − ipy)

0 0 vF (px + ipy) V (x)











= vF τ0 ⊗ (p · σ + V (x))

In the presence of a magnetic field this Hamiltonian is transformed to,

H = vF τ0 ⊗ [(p+ eA) · σ + V (x)] (2.81)

The time reversal operator becomes,

T = UT U † =

















0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

















C =





0 iσy

−iσy 0



C = −(τy ⊗ σy)C (2.82)

We can also observe that this time reversal operator also satisfies TT−1 = I4. This is only a

transformation. The wavefunctions obtained from the Eq. (2.81) can be transformed to older

hamiltonian with the reverse tranformation, although the eigenvalues remain same. We shall

now use Eq. (2.81) and Eq. (2.82) to calculate the DBdG equation of dimension (8 × 8) from
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Eq. (2.76),

H − µ =





vF [(p+ eA) · σ + V (x)− µ] 0

0 vF [(p+ eA) · σ + V (x)− µ]





=





vF [π · σ + V (x)− µ] 0

0 vF [π · σ + V (x)− µ]





=

















V (x)− µ vF (πx − iπy) 0 0

vF (πx + iπy) V (x)− µ 0 0

0 0 V (x)− µ vF (πx − iπy)

0 0 vF (πx + iπy) V (x)− µ

















(2.83)

THT−1 =









0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0









C









V (x) vF (πx − iπy) 0 0

vF (πx + iπy) V (x) 0 0

0 0 V (x) vF (πx − iπy)

0 0 vF (πx + iπy) V (x)









×









0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0









C (2.84)
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Here, π = p+ eA

THT−1 =









0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0









C

×









0 ℏvF (−i∂x − ∂y) 0 0

ℏvF (−i∂x + ∂y) 0 0 0

0 0 0 ℏvF (−i∂x − ∂y)

0 0 ℏvF (−i∂x + ∂y) 0









×









0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0









C

+









0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0









C









V (x) evF (Ax − iAy) 0 0

evF (Ax + iAy) V (x) 0 0

0 0 V (x) evF (Ax − iAy)

0 0 evF (Ax + iAy) V (x)









×









0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0









C

=









0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

















0 ℏvF (i∂x − ∂y) 0 0

ℏvF (i∂x + ∂y) 0 0 0

0 0 0 ℏvF (i∂x − ∂y)

0 0 ℏvF (i∂x + ∂y) 0

















0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0









+









V (x) −evF (Ax − iAy) 0 0

−evF (Ax + iAy) V (x) 0 0

0 0 V (x) −evF (Ax − iAy)

0 0 −evF (Ax + iAy) V (x)








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=











0 ℏvF (px − ipy) 0 0

ℏvF (px + ipy) 0 0 0

0 0 0 ℏvF (px − ipy)

0 0 ℏvF (px + ipy) 0











+











V (x) −evF (Ax − iAy) 0 0

−evF (Ax + iAy) V (x) 0 0

0 0 V (x) −evF (Ax − iAy)

0 0 −evF (Ax + iAy) V (x)











=











V (x) vF (π̄x − iπ̄y) 0 0

vF (π̄x + iπ̄y) V (x) 0 0

0 0 V (x) vF (π̄x − iπ̄y)

0 0 vF (π̄x + iπ̄y) V (x)











(2.85)

Here, π̄ = p− eA.

THT−1 =





vF [(p− eA) · σ + V (x)] 0

0 vF [(p− eA) · σ + V (x)]





= vF τ0 ⊗ [(p− eA) · σ] + V (x) (2.86)

We can observe that the scalar potential V (x) does not invert sign but the magnetic vector

potential A change sign under the time reversal operation[90].

This makes the DBdG equation in presence of external potential V (x) and magnatic vector

potential A(x) as,





vF τ0 ⊗ (p+ eA) · σ + V (x)− µ ∆

∆∗ µ− vF τ0 ⊗ (p− eA) · σ − V (x)









Ψe

Ψh



 = ε





Ψe

Ψh





(2.87)
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CHAPTER 3

Scattering of Massless Dirac Fermions from a Two Dimen-

sional Quantum Dot Lattice

This chapter is based on the published work - “Electronic analogue of Fourier optics with

massless Dirac fermions scattered by quantum dot lattice”, Partha Sarathi Banerjee, Rahul

Marathe and Sankalpa Ghosh, J. Opt., 26, 095602.

The unique transmission properties of massless Dirac fermions (MDF) in graphene through

potential landscapes created by a variety of electromagnetic (EM) fields, particularly in the

ballistic regime [4, 11, 20, 56, 71, 104], and its similarity with the light transmission through

an optical medium with unconventional dielectric properties such as metamaterials [105, 106]

make graphene an excellent material to realize electron optics-based devices in a solid state

system. The realisation of negative refraction [12], chiral Veselago lensing of MDF in two

[3] and three dimensions [5], tunable Veselago interference in a bipolar graphene microcavity

[107], creation of a Dirac fermion microscope [2], collimation [1, 7, 108], and different type of

interferometers [15–18], gate tunable beam-splitter of such MDF [6], Fabry-pérot resonator in

graphene/hBN moiré super-lattice [19], gradient index electron optics in graphene p-n junction

[109], Mie scattering in graphene, [14] are few milestones in this direction. Most of these exper-

imental and theoretical studies are based on theoretical modelling of Dirac fermions scattered

by the potential, which are constant in one direction [4, 7, 11, 20–22, 54, 56, 63, 71, 104, 110,

111], and hence limit the range of applications in this fast-growing field.

New possibilities can emerge if the EM potential that can scatter such MDF can vary along

both transverse directions. For example, in the well-known Fraunhofer diffraction, when the

observation point is significantly distant(z) from the diffracting object dubbed as the far-field

case, the field distribution at the observation plane is the Fourier transform of the aperture

function(A(x′, y′)) [25–28, 112–114]. The diffracting object is positioned at the front focal

plane of a lens, resulting in the generation of a Fourier transform of the object at the back focal

plane of the lens, thereby satisfying the conditions for the Fraunhofer approximation(z >> [x′2 + y′2]max /λ)

https://doi.org/10.1088/2040-8986/ad645b
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Boron Nitride

FIG. 3.1: (a) The schematic diagram of a plane wave (direction shown in blue arrows) of charge
carriers in ballistic graphene that are modelled as MDF under ambient conditions,
getting scattered by a two-dimensional array of Gaussian quantum dot(QD) potentials
created by STM tips. (b) The polar plot of the DSC for a square lattice of QDs as
given by Eq. (3.3a), of dimension N1 = 10,N2 = 0 and orientation ϕ = 0. The
central maxima at θ = 0 is multiplied with 1.6 × 10−3 for better visibility. The first
maxima on both sides are multiplied by 0.8×10−2. The second ones are multiplied by
0.32 for better visibility with respect to the other smaller peaks. In the inset we have
shown the differential scattering cross section for a single QD for differential values
of β. In (c) and (d) the angle-resolved dc-resistivity of the system parallel to the
direction of propagation of the incoming plane wave of graphene electrons is plotted
under this scattering potential rotated at an arbitrary angle. The resistivity pattern for
square and hexagonal lattices of QDs is shown in (c) and (d) for N2 = 100. The
resistivity at ϕ = 0◦ and 90◦ is the same for the square lattice but not in the case of the
hexagonal lattice. In Figs. (e)-(g) we compare the process described in (a)-(d) with
the two-dimensional optical spatial frequency processor, whereas a short thesaurus
listing various analogue quantities in these two systems is given in TABLE 3.1. In (e)
we show that the object is positioned in the front focal plane of lens 1. The Fourier
transform of the object distribution is found in the back focal plane of lens 1 as shown
in (f). This plane is called spatial frequency plane [25, 26]. At the image plane in
(g) the object distribution is recovered. This figure is taken from our published work
[44].
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as depicted in FIG. 3.1 and described in TABLE 3.1. The framework of Fourier optics was in-

troduced in a seminal work by P. M. Duffieux [112] and later elucidated in detail in the classic

textbook of Born and Wolf [27]. In this work we show that an electronic analogue of this sit-

uation can be realized in a fully two-dimensional (2D) scattering model, where the scattering

of such MDF takes place from a two-dimensional superlattice potential that can be realised by

creating an electrostatically defined array of quantum dots (QDs) on the surface of single-layer

graphene[51, 53, 55, 115–120]

The scattering of electrons by gate-defined QDs with sharp p-n junction has been theoret-

ically studied using the Mie scattering [14] and multiple scattering theory [51, 55, 120]. In

comparison to those approaches, in this paper using first Born approximation, we show that,

the differential scattering cross-section (DSC) of a scattering potential is proportional to the

Fourier transform of the potential profile. This is analogous to intensity in the back focal plane

in the case of Fraunhofer diffraction pattern [27, 112]. However, due to Klein tunneling and

absence of back-scattering, the MDFs in graphene are mainly transmitted towards the forward

region which makes graphene scattering interesting. Particularly in the inset of FIG. 3.1 (b)

we show the differential scattering cross-section from a single QD forms a cardioid like pattern

which combine the effects of Mie scattering and Klein tunneling for the gaussian QD we are

considering. In this framework we showed how using dc-resistivity, an experimentally measur-

able quantity which is dependent on this DSC, we can analyze the properties of the scattering

potential in a way that is reminiscent of optical image processing. While in optical image pro-

cessing a second lens is used to reconstruct the image (depicted in FIG. 3.1), similar thing is

however not possible in our system. To overcome this limitation we have introduced another

degree of freedom, rotation angle ϕ, which is the angle between the direction of propagation

of incident plane wave and the symmetry axis of the two dimensional QD lattice (TDQDL).

By doing Fourier analysis of this dc resistivity we can get information about the symmetry and

lattice configuration, lattice constant, size and location of defect of the scattering lattice. In a

moiré pattern of two TDQDL, we have shown that the Fourier analysis can give us the informa-

tion about the symmetries (moiré pattern of two hexagonal/square lattices) and commensurate

conditions.

Particularly in the ballistic regime, with the Fermi velocity vF ∼ 106 m s−1, the mean free

path of the charge carriers in graphene are several microns [121–123] ≫ the size of (∼ 10 nm)

[124] such scatterers, and the Fraunhoffer criterion is satisfied [123, 125, 126]. In order to ob-
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(a) (b)

FIG. 3.2: Resistivity pattern for (a) square QD lattice of size N2 = 200 and ∆ = 1 with square
defect region with different sizes and (b) hexagonal QD lattice of size N2 = 61 and
∆ = 1 with circular defect region of different radiuses. In (a), The resistivity pattern
is symmetric on both sides of ϕ = 0 only when the defect region is centred at the
origin and for the blue curve, we have removed scatterers from n1 = 10 to 110 and
n2 = 10 to 110. For the orange curve n1 = 10 to 110 and n2 = 90 to 190. In (b), the
defect region is placed in the centre of the original QD lattice. Here, the resistivity
pattern is symmetric on both sides of ϕ = 0. Here, β = 10 nm. This figure is taken
from our published work [44].

serve a clear diffraction pattern in the optical case, the aperture length must be comparable to the

wavelength of light [27, 28]. This is ensured in our analogue solid-state system by considering

that the lattice spacing (∼ 40 nm) and characteristic length (∼ 10 nm) of each barrier [124] in

this QD lattice are smaller than the de Broglie wavelength calculated from the incident energy

of the graphene electrons (∼ 30 - 40 meV) [18]. Also, for the typical energy range we have con-

sidered, the wavevector of the MDF is much smaller than the Fermi wave vector, i.e.,k ≪ kF ,

eliminating the possibility of inter-valley scattering. The difference in K and K’ valleys are sep-

arated by 10 − 11 eV and the energy range associated with the graphene electrons are in ∼ 20

meV. Thus, the problem can be modelled by starting with the single-valley non-interacting

Hamiltonian of the massless Dirac fermions in single-layer graphene given by Ĥ0 = vFσ · p.

Such a two-dimensional QD lattice (TDQDL) serves as two-dimensional grating for the inci-

dent charge carriers for graphene, leading to an electronic analogue of Fraunhofer diffraction

pattern, but with an important distinction characterising the absence of backscattering for such

MDF [58, 127]. Maintaining ballistic and phase-coherent electron transport over the length

scale of a periodic gate array requires high-mobility, hBN-encapsulated graphene, which has

already been demonstrated in electron-optics experiments [128, 129]. Furthermore, advances

in nanoscale electrostatic gating enable controlled formation of smooth and well-defined p–n
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junctions and collimating structures, providing a realistic pathway toward engineering periodic

quantum dot lattices for Dirac fermion optics [11, 130]. Also, the mismatch of maximas from

each quantum dot can introduce disorder. However as we have differences between maximas,

δV << V0, it can be ignored. In realistic devices, charge puddles arising from trapped impu-

rities in the substrate can create spatial carrier-density inhomogeneity that distorts the intended

periodic potential landscape [128, 131]. In addition, lithographic edge roughness and gate-

induced potential fluctuations can break the ideal lattice symmetry, although such effects can

be incorporated numerically by introducing random onsite potential disorder or correlated po-

tential fluctuations within tight-binding or Green’s function simulations [132, 133]. In Sec. 3.1,

we discuss the scattering of MDF from three prototype combinations of such dot lattices and

lay down the basic premises of our theoretical approach.

3.1 Theory

3.1.1 Calculation of Differential Scattering cross sections for three proto-

type cases

In Chapter 2, we have derived the Lippmann-Schwinger equation for MDFs in Eq. (2.7). We

have also calculated the Green’s function for MDFs in Eq. (2.16). Using those definitions, the

scattered state of such MDF |Ψk⟩ from an arbitrary scattering potential V can be obtained by

finding out the solutions of
(

Ĥ0 + V̂
)

|Ψk⟩ = E |Ψk⟩ using the Lippmann-Schwinger formal-

ism and can be written as [90, 96]

Ψe,+
k

(r) = ϕe
k
(r⃗)− eikr

2ℏvF

√

ik

πr





1

eiθ





〈

ϕe
k′

∣

∣

∣
T̂
∣

∣

∣
ϕe
k

〉

(3.1)

where, transition operator T̂ = V̂ + V̂ Ĝ±
0 V̂ + V̂ Ĝ±

0 V̂ Ĝ
±
0 V̂ + . . . and Ĝ±

0 is the Green’s

function defined as Ĝ±
0 = limϵ→0

[

EI2 − Ĥ0 ± iϵ
]

. (ϕe,h
k

) are respectively free particle electron

and hole solutions of Ĥ0 |ϕk⟩ = E |ϕk⟩, Here, k is the wave-vector of the incident wave, k′ =

kr̂ , θ is the angle between k and k′. We also discussed about the transition operator in Sec. 2.2.

Realistic QD lattices that are heavily n-doped centres on a p-doped background [53, 118,

119] serves as scattering potential V as a Gaussian quantum dot array
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V (r) =
∑

n

(

V0
2πβ2

)

e−
1

2
( r−rn

β
)2 (3.2)

where rns are the centres of each quantum dot where the Gaussian potential of width β forms

its maxima. The quantum dots are considered such that at r = rn, V (r) = V0. Such poten-

tial profile can be created using a needle-like electrode offered by an STM tip [53, 117–119],

connected with a gate potential as shown in FIG. 3.1(a).

In experimental systems [118, 134, 135], these quantum dots are made on graphene/hBN

heterostructures on SiO2/Si substrate. The gate potential creates a stationary charge distribution

in the insulating hBN underlayer, which creates the Gaussian potential profile in the graphene

sheet. The SiO2/Si substrate acts as a global back gate. To make an array of such QDs, the

single electrode can be replaced by an array of such electrodes [117, 136, 137].

For the type of potential profile depicted in Eq. (3.2), the premise for Fourier electron op-

tics(FEO) with such MDF can be developed first by evaluating differential scattering cross-

sections (DSC), which we did for three carefully chosen prototype combinations of such dot

lattices and subsequently demonstrating their effect on transport. The DSCs evaluated respec-

tively are:

dσ

dθ
=

1

4ℏ2v2F

(

k

π

)

V 2
0 µ(θ)M

2
1 (θ, ϕ)M

2
2 (θ, ϕ),

square lattice with dimension (∆N2 ×N2),and hexagonal

lattice rotated in an angle ϕ (3.3a)

=
kV 2µ(θ)

4πℏ2v2F
[M1 (N2,∆, ϕ,q)M2 (N2, ϕ,q)−M1 (Nd2,∆d, ϕ,q)M2 (Nd2, ϕ,q)]

2

, square QD lattice with a defect region of rectangular shape (3.3b)

=
kV 2µ(θ)

4πℏ2v2F

[

M1

(

N2,∆, ϕ− δ

2
,q

)

M2

(

N2, ϕ− δ

2
,q

)

+M1

(

N2,∆, ϕ+
δ

2
,q

)

M2

(

N2, ϕ+
δ

2
,q

)]2

moiré pattern of two QD lattices (3.3c)

Here,

M1(N2,∆, ϕ,q) = sin
(

N2∆dq · x̂′/2
)

/ sin
(

dq · x̂′/2
)

(3.4a)

M2(N2, ϕ,q) = sin
(

N2dq · ŷ′/2
)

/ sin
(

dq · ŷ′/2
)

(3.4b)
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in Eq. (3.3) are conventional Fraunhofer diffraction patterns for an one-dimensional grating

in mutually transverse direction. µ(θ) = (1 + cos θ) exp
[

−4k2β2 sin2(θ/2)
]

is due to the gaus-

sian aperture profile (Eq. (3.2)) modulated by a factor due to the absence of backscattering [58,

104] for MDFs in graphene , and q = k−k′, rn = n1dx̂′+n2dŷ′, where n1 and n2 are integers,

and the x′, y′ axis is rotated with respect to the incident electrons by an angle ϕ.

For the first case, we take QDs arranged in square and hexagonal lattice arrangement with

suitable choices of rn. The corresponding result, which is plotted in FIG. 3.1(b) in a polar plot,

mimics the well-known Fraunhofer pattern with suitable modification due to the absence of

back-scattering. This can be thought of as a two-dimensional generalisation of the well-known

result of scattering by a smooth p-n junction in one dimension [20], T ∼ exp
(

−πkFβ sin2(θ)/2
)

,

as the scattering decreases exponentially with β in Eq. (3.3a) as dσ
dθ

∼ e−4k2β2 sin2(θ/2) with a

characteristic length(β in our case). In the inset of FIG. 3.1 (b), we show a polar plot of DSC

from a single quantum dot. Due to Klein tunnelling, we can observe that the DSC is maximum

in the forward direction and zero in the backward direction due to absence of backscattering

[58, 104].

Differernce between Scattering of 2DES and Graphene Electrons

The differential scattering cross sections for electrons in a two-dimensional electron system(2DES)

scattered from a square TDQDL is given by

dσ

dθ
=

(

2m

ℏ2

)2 (
V 2
0

8πk

)

e−4k2β2 sin2( θ
2)M2

1 (θ, ϕ)M
2
2 (θ, ϕ). (3.5)

By comparing Eq. (3.3a) and (3.5), we can observe that the differential scattering cross

section in graphene is proportional to k(∼ E), but in 2DES, it is proportional to 1/k (∼
E−1/2) [138–140]. This happens due to the fact that the Green’s function for 2DES, GNR

0 ∝ 1√
k

[96]. However for MDFs G0 ∝
√
k [44]. Such low-energy divergence of the two-dimensional

scattering cross section has been observed in ultracold atoms confined to quasi-2D traps [141,

142]. This difference of energy dependence can be understood from FIG. 3.3, where we show

the transport scattering cross section for massless Dirac fermions both in the case of graphene

and two-dimensional non-relativistic systems. We can observe from Eq. (3.3a) that for scatter-

ing at low energy, the differential scattering cross section for massless-Dirac fermions becomes
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FIG. 3.3: The energy dependence of the resistivity for graphene(G) and non-relativistic(NR)
two dimensional systems. This figure is taken from our published work [44].

dσ
dθ

=
k∆2N4

2V
2
0

4πℏ2v2
F

(1 + cos θ). That makes the transport scattering cross section σtr =
(

∆2N4
2V

2
0

4ℏ2v2
F

)

k

and the resistivity becomes, ρ =
(

nπ2∆2N4
2V

2
0

2he2kF v2
F

)

k. Due to this, we see the linear variation of

resistivity with E at low energies in FIG. 3.3. From Eq. (3.5) for non-relativistic electrons in

2D, at low energy the differential scattering cross section becomes, dσ
dθ

=
(

2m
ℏ2

)2
(

V 2
0

8πk

)

∆2N4
2 .

The transport scattering cross section becomes σtr =
(

mV0∆N2
2

ℏ2

)2

× 1
k
. In FIG. 3.3, we see

that at low energies, the transport scattering cross section becomes inversely proportional to the

energy of the incident particle.

Scattering from a lattice with a defect region and moiré pattern of two QD lattices

In the next two cases, we first consider a scattering lattice made of TDQDL with defects of

different shapes and sizes (Eq. (3.3b), FIG. 3.2 ), and then a third case of scattering potential

made with moiré pattern of two square lattices of TDQDL (FIG. 3.4), making the differential

scattering cross-section dependent on the twist angle(δ) between the two square TDQDLs. The

scattering amplitude for the TDQDL with a defect region is the difference between the contri-

bution from the original TDQDL scattering potential (without the defect region ) and a TDQDL

of the same shape and position of the defect region in Eq. (3.3b). In the third case of moiré

pattern, the scattering amplitude is again the sum of the contributions from two lattices rotated

with respect to each other, and the differential scattering cross section in Eq. (3.3c) is the square

of this sum. This happens due to the linearity property of the Fourier transform [27]. In the
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FIG. 3.4: The schematic diagram of a plane wave of massless Dirac fermions getting scattered
by a moiré superlattice of two (a) square and (b) hexagonal lattices of Gaussian quan-
tum dots(QD) in graphene. Moiré pattern made by two square lattices of TDQDL
producing a commensurate structure at a twist angle, δ ≈ 6.026◦ is shown in (c). The
moiré lattice is shown in green, and the commensurate lattice is shown in black. Such
quantum dots can be created in experimental system by using tips with applied gate

voltage in the same way as in FIG. 3.1. In (d)
∣

∣

∣Ṽ (q1)
∣

∣

∣

2

is plotted as a function of

q1x and q1y for the above scattering potential. The resistivity pattern with fixed the
mean angle(ϕ) is shown in (e) and (f) for a TDQDL scattering potential made with
moiré pattern of two square and hexagonal lattices, respectively. In (g) and (h), the
resistivity pattern is plotted with fixed twist angle(δ) again for a moiré pattern of two
square and hexagonal lattices, respectively. This figure is taken from our published
work [44].

analogous case of optical diffraction systems, this is known as Babinet’s principle [27, 143,

144].

For the square TDQDL with defect region, we have considered four specific cases by vary-

ing the locations and sizes of the cavities. For a square defect region ((∆d = 1)) in a square

TDQDL, the length of the side of the square-shaped cavities(Nd2) is varied to vary the size

of the cavities. We have also taken two cases where the centre of the defect region does not

coincide with the centre of the parent square TDQDL. In FIG. 3.2 (a) we can notice that the

red and blue curves are interchangeable under reflection about ϕ = 0. This happens because

ϕ = 0 denotes the direction of propagation of the plane wave of incoming electrons. The de-

fects corresponding to these curves are located at opposite points with respect to the direction

of propagation. This shows that the resistivity pattern is sensitive to the location of the defect.
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For the moiré pattern, the moire lattice vector dM is related to the twist angle by δ =

2 sin−1
(

d
2dM

)

[145]. The moiré pattern produces a periodic pattern with lattice periodicities
√
2NdM [145, 146]for the commensurate angles where N is an integer. The commensurate

super-cell lattice vectors [147, 148] for ϕ = 0 are given by RC1 =
(

d
2 sin(δ/2)

)

N(x̂ + ŷ) and

RC2 =
(

d
2 sin(δ/2)

)

N(−x̂+ ŷ)

For every value of N, we get a set of commensurate angles. For the particular commensurate

structure that we have considered for square lattice, this common period is larger than the moiré

cell by factor
√
2 [145] ( see FIG. 3.4(c)). The moiré lattice with lattice periodicity dM is

shown in green. This commensurate lattice is shown in black in FIG. 3.4(c). The primitive

lattice vectors RC1 and RC2 are not same as the moiré lattice vectors RM1 =
(

d
2 sin(δ/2)

)

x̂ and

RM2 =
(

d
2 sin(δ/2)

)

ŷ. Due to the commensurate periodicity, scattering potentials made with

such patterns show additional Bragg condition from Eq. (3.3c),

2Nk2d2M sin2

(

θ

2

)

= (m2
1 +m2

2) (3.6)

The detailed discussion on the maximum scattering conditions is shown in Sec. 3.1.2.

3.1.2 Condition for Maximum Scattering in case of moiré pattern of two

TDQDL

The differential scattering cross-section for these systems is directly proportional to
∣

∣

∣
Ṽ (q)

∣

∣

∣

2

.

Here Ṽ (q) is the Fourier transform of the scattering potential V (r). In FIG. 3.5, we show the

Fourier transform of the scattering potential made by a square TDQDL. The positions for the

principle maximas are given by q1x = n1(2π/d) and q1y = n2(2π/d) where n1 and n2 are

integers. These correspond to the Bragg condition. The secondary minimas are separated by a

distance of
(

2π
Nd

)

. We can also notice that
∣

∣

∣
Ṽ (q)

∣

∣

∣

2

has maximum value for the central maxima

at q1x = 0 and q1y = 0 because the Fourier transform of the scattering potential has a Gaussian

term e−4k2β2 sin2(θ/2) same as in µ(θ) in Eq. (3.3a).

For the case of moiré pattern of two square TDQDL scattering potentials, we have shown

the maximum scattering cases in FIG. 3.4 (d). We can observe that the Fourier transform is also

a moiré pattern of two square patterns in inverse space. The reciprocal lattice vectors, in this
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FIG. 3.5:
∣

∣

∣
Ṽ (q)

∣

∣

∣

2

plotted as a function of q1x and q1y for a single layer of TDQDL for N = 5.

This figure is taken from our published work [44].

case, is

GM1 =
4π sin

(

δ
2

)

d
x̂, GM2 =

4π sin
(

δ
2

)

d
ŷ (3.7)

GC1 =
4π sin

(

δ
2

)

d
N(x̂+ ŷ), GC2 =

4π sin
(

δ
2

)

d
N(ŷ − x̂) (3.8)

Where, N is an integer. For every value of N , we have a set of commensurate angles.

The Fourier transform produces a commensurate pattern only when the scattering potential

itself produces a commensurate pattern. The Bragg conditions, which appear only in the case

of commensurate lattice i.e.,Eq. (3.6) correspond to those points in FIG. 3.4 (d) for which q =

m1GC1 +m2GC2.

3.1.3 Electronic Analogue of Fourier Optics

To understand how the above results can be interpreted as an electronics analogue of Fourier

optics in a succinct way, in the left column of TABLE 3.1 we list quantities that characterise

a Fraunhofer diffraction-based spatial frequency filtering in optical imaging systems [25, 26,

114] and are demonstrated in Figs. 3.1 (e), (f), (g). In the right column of the same table, we list
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Table 3.1: Dictionary for various quantities in Fraunhofer diffraction in optics and their coun-
terparts in scattering of MDF in graphene from a QD lattice:.

Fraunhofer Diffraction in optics Scattering of MDF in

graphene from QD lattice

Aperture profile in front focal plane, A(r′) Scattering potential V (r′)

Field distribution at back focal plane:

G(u, v) =
1

λf

∫∫

dx′dy′ g(x′, y′)e−i(ux′+vy′)

Scattering amplitude:

f(θ) = −
√

ik
2π

(1 + eiθ)

2ℏvF

×
∫∫

dx′dy′ V (x′, y′)ei(qxx
′+qyy′)

Intensity: I = |G(x, y)|2 Differential scattering cross

section:
dσ

dθ
= |f(θ)|2

u = 2πx
λf

, v = 2πy
λf

−qx and −qy

1
λf

− 1

2ℏvF

√

ik
2π

(

1 + e−iθ
)

(

2π
λf

)

r −q = k′ − k

(

2π
λf

)2

r2 q2 = 4k2 sin2
(

θ
2

)

the corresponding quantities that define the analogue system of MDF scattered by a QD lattice.

From TABLE 3.1, we can observe that both the scattering amplitude in our system, f(θ) and

the amplitude distribution at the spatial frequency plane in FIG. 3.1(e), G(u, v) is the Fourier

transform of the scattering potential V (x′, y′) and the object distribution g(x′, y′) respectively,

whereas the presence of (1 + eiθ) term in f(θ) of MDF indicates the absence of backscattering

[58, 71, 104].

For MDF, the position coordinate (r) is transformed to angular wave number coordinate (q),

whereas in the corresponding optical system, the coordinates of the plane of aperture, x′ and y′,

are transformed to u and v, respectively. Correspondingly, the differential cross section, dσ
dθ

in

the case of MDF is replaced by intensity distribution I in the optical case as demonstrated in

Figs. 3.1(b) and (f).

A noteworthy difference with the corresponding optical system appears when the superpo-

sition of two such TDQDL, rotated with respect to each other so that the resulting pattern is a
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moiré pattern, widely studied in optics [1, 149–151] and condensed matter [147, 148, 152–156].

Such moiré patterns are studied in optical imaging to improve the microscope’s imaging capa-

bilities in Structural Imaging Microscopy [157–159]. In optical systems, the resultant aperture

profile for two transparencies g1(x′, y′) and g2(x′, y′) is g1(x′, y′) × g2(x
′, y′) [160, 161]. This

leads to a new pattern which consists of new beating frequencies [162]. However, for MDF

scattered by two potentials V1(x′, y′) and V2(x′, y′), the differential scattering cross-section de-

pends on the Fourier transform of V1(x′, y′) + V2(x
′, y′). This leads to additional maximum

scattering conditions from Eq. (3.3c) as shown in Eq. (3.6) and depicted in FIG. 3.4 (d). The

resultant scattering potential shows a new periodicity only for commensurate angles.

The above analogy between the scattering problem of MDF from TDQDL and the Fourier

optics using a 2D grating naturally leads to the question if this can be extended to the electronic

analogue of optical image processing. In optical systems this is achieved through a second FT

through lenses in the optical system ( see FIG. 3.1(g)). In our system, we introduce another

degree of freedom, by rotating our scattering potential about a transverse axis passing through

the centre of the TDQDL. We define a spatial angle ϕ between the propagation direction of

the MDF and the symmetry axis of the TDQDL in the graphene plane. While a direct anal-

ogy with the optical image processing is difficult, we show that some information about the

structure of the TDQDL can be retrieved by calculating the dc resistivity at zero temperature

for different rotation angles (ϕ). Using the semiclassical Boltzmann theory, the dc resistivity at

zero temperature [93, 97, 98] is given by

ρ =
2nvFσtr

e2v2FD(EF )
=

2n

e2vFD(EF )

∫ 2π

0

dθ (1− cos θ)
dσ

dθ
. (3.9)

We note that Eq. (3.9) is valid in the limit of small concentration (n) of scattering centers

due to quantum dot lattice potential. Here, e =charge of an electron, vF = Fermi velocity,

D(EF ) = density of states at Fermi energy and σtr is the transport scattering cross-section.

Corresponding values of the resistivities in systems considered are within the typical range

of observed resistivities in graphene-based systems [163–165]. Additionally, our calculated

values of resistivities can also be adjusted by choosing the gate voltages applied at every QD

and varying the height of the scatterers.
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FIG. 3.6: Resistivity vs Nd2 plot for different values of ϕ. This figure is taken from our pub-
lished work [44].

3.1.4 Analysis of the angular distribution of resistivity

The corresponding results, namely the angular distribution of resistivity, are plotted in Figs. 3.1(c)

and (d) for square and hexagonal TDQDL, in Figs. 3.2(a) and (b) for TDQDL with a defect re-

gion , and in Figs. 3.4 (e),(f),(g) and (h) for moiré pattern of two TDQDL lattices, to demonstrate

how certain structural information of these TDQDLs can be retrieved from this angle-resolved

resistivity.

We begin with the observation that ρ(ϕ) in Figs. 3.1(c) and (d) reflects the discrete rotational

symmetry of the square and hexagonal lattice, e.g. dσ
dθ

∣

∣

∣

∆,N2,ϕ=0◦
= dσ

dθ

∣

∣

∣

1

∆
,∆N2,ϕ=90◦

in case for

square lattice, but not for the hexagonal lattice.

This may be contrasted with the observation in Figs. 3.1(c) and (d) that ρ(−π/2) = ρ(π/2)

for both square and hexagonal lattice of TDQDL. For TDQDL with a defect region , the resis-

tivity pattern calculated with the help of Eq. (3.3b) and Eq. (3.9) reveals both the symmetry of

the TDQDL, as well as the location and size of the defect region . In FIG. 3.2(a) comparing
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between blue, red, and orange-yellow plots of the ρ(ϕ), we see that the location of the square

defect region in the corresponding square TDQDL indeed exhibits itself in the symmetry of

the resistivity plot about the ϕ = 0 line. Similarly, comparing the cases of orange-yellow and

the green plots of ρ(ϕ), we see that the size of the defect region , which is proportional to the

number of removed scattering centres, indeed affects the magnitude of the resistivity pattern.

Hexagonal TDQDL, with cavities of circular shape with radius(rd) in FIG. 3.2(b), shows the

same effect. In FIG. 3.6, we show the dependence on resistivity at different values of ϕ on the

size of the defect region. Here, we can notice that the oscillations are more prominent at higher

values of ϕ. This can be explained from Eq. (3.4). Near ϕ = 0, we can write,

M1(N2,∆, ϕ,q) =
sin

(

N2∆dq1x
2

)

sin
(

dq1x
2

) − ϕdq1y
2

N2∆sin
(

(N2∆−1)dq1x
2

)

sin2
(

dq1x
2

) (3.10a)

M2(N2, ϕ,q) =
sin

(

N2dq1y
2

)

sin
(

dq1y
2

) − ϕdq1x
2

N2 sin
(

(N2−1)dq1y
2

)

sin2
(

dq1y
2

) (3.10b)

This shows that for lower values of ϕ we have less oscillations. From FIG. 3.6, we can

observe that the plot is the same for angles ϕ, (π/2−ϕ) and −ϕ. As both the original scattering

lattice is made of square lattice and of square shape(∆ = 1) and the defect region is also in the

shape of a square, this symmetry comes.

The differential scattering cross section for the scattering potential made with a moiré pat-

tern of two square lattices of TDQDL is shown in Eq. (3.3c). In FIG. 3.4 (d), we show Ṽ (q) as

a function of q1x and q1y (see Sec. 3.1.2). As expected, FT is also a moiré pattern of two square

patterns in inverse space but multiplied by the same µ(θ) given in Eq. (3.3c). In FIG. 3.4, (e), we

show the dependence of the resistivity pattern on the twist angle(δ) for fixed values of average

angle (ϕ) with the incident plane wave of massless Dirac fermions.

The most prominent features of these resistivity plots of TDQDL in Figs. 3.1(c) and (d), for

TDQDL with cavities in Figs. 3.2(a), and (b), and for moiré pattern of TDQDLs in Figs. 3.4(e)-

(h), are oscillations in resistivity as a function of the angular variable. To understand the oscil-

lations in resistivity plots Figs. 3.1(c) and (d) in a more quantitative way we did an FT of the

resistivity that can provide the range of these angular frequencies (see FIG. 3.8). If we choose l

as the conjugate variable of ϕ, we can denote the highest angular frequency component present
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FIG. 3.7: Cut-off frequency( lC ) vs lattice constant(d) plot in the case for (a) square and
TDQDL with N2 = 100(b) hexagonal TDQDL with N2 = 30. This figure is taken
from our published work [44].

in one ρ vs ϕ curve as lc or cut-off angular frequency for a given lattice.

For the single layer of TDQDL, lc depends on the lattice parameter of the scattering lattice

as the DSC also depends on the lattice parameter in Eq. (3.3a). In FIG. 3.7, we show the depen-

dence of cut-off frequency on the lattice constant both for square and hexagonal lattice. Here,

we see that at a particular value of d, the cut-off frequency is different for different ∆ values.

In FIG. 3.8 (a), the Fourier spectrum of the resistivity pattern as a function of l for a TDQDL

shows a feature that is similar to the side-band formation. We highlight this aspect through an

envelope function ( dotted orange curve) over the actual result. For the same TDQDL, with a de-

fect region at the centre, and for the same cut-off frequency, this side-band like feature becomes

more prominent in FIG. 3.8 (b), whereas this side-band like feature gets highly suppressed in

the case of moiré pattern of two relatively twisted TDQDls in FIG. 3.8 (c). These points out

that certain angular frequency components get enhanced or suppressed as the scattering region

is removed or added, a phenomenon akin to the spatial frequency filtering in Fourier optics, but

now happening in the solid state environment for the angle-resolved resistivity, a transport coef-

ficient. This can also be linked to the electronic analogue of Babinet’s principle that we reported

earlier in this manuscript. In the ballistic transport regime, the spatial frequency filtering in the

angle resolved resistivity of MDFs scattered from TDQDL is shown as an electronic analogue

of Babinet’s principle. This forms one of the most prominent findings in this work.

47



FIG. 3.8: (a) Shows the Fourier transform(FT) of the resistivity pattern for a TDQDL withN2 =
50, ∆ = 1 and d = 70(nm). The blue cross (×) denotes the value of amplitude
corresponding to each spatial frequency (l). In the inset, we have shown the total
data. The main figures do not show the central peak to display the smaller values. The
FT of the resistivity pattern through a Gaussian filter for the same TDQDL scattering
potential with a square defect region (in the centre) is shown in (b). In (c), we show
the FT of the resistivity pattern through a Gaussian filter for a scattering potential
made with a moiré pattern of two square TDQDL with the same lattice constant. This
figure is taken from our published work [44].

3.2 Conclusion

To summarize, using the Lippmann-Schwinger formalism, we established an electronic ana-

logue of Fourier optics i.e.,FEO by mapping the scattering cross-section of MDF from TDQDLs

to the Fraunhauffer diffraction pattern and providing a dictionary of such mapping. By consid-

ering TDQDL with defect region and moiré pattern of such TDQDLs, we demonstrated an

electronic analogue of Babinet’s principle. Harnessing this analogy further with an eye on

practical application, we evaluated the angle-resolved resistivity of these scattered MDs, and

Fourier analyze the same to show that the Fourier spectrum shows spatial frequency filtering

consistent with Babinet’s principle. With the quantum dot arrays now routinely produced in

semiconductor-based systems [136, 166, 167], we hope our proposed analogy can be used for

making new electronic devices based on such analogue FEO.
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CHAPTER 4

Magnetically modulated superconductor-graphene-superconductor

(SGS) Josephson junctions and their tunability

This chapter is based on the published work - “Magnetically modulated superconductor-

graphene-superconductor (SGS) Josephson junctions and their tunability”, Partha Sarathi Baner-

jee, Rahul Marathe and Sankalpa Ghosh, Phys. Scr., 100, 015965.

4.1 Introduction

The dissipation-less super-current, namely the Josephson current (JC) that flows through Joseph-

son junctions (JJ) [81, 82] played a significant role in quantum technologies such as supercon-

ducting qubit devices [32, 34, 168–170], sensing small magnetic fields [35, 171], parametric

amplifiers [172, 173], single photon detection [174], etc., to name a few. The JC decreases with

increasing temperature, which is the primary tuning parameter for such JJs for given materi-

als, and vanishes at the critical temperature [175–177]. The JJs have been made with a thin

insulating layer [178–180], metal [181–183], two-dimensional-electron-gas[184, 185], ferro-

magnet[186], and in recent times using mono and bilayer graphene where two closely spaced

superconducting electrodes are placed on a graphene(G) sheet to make an SGS type [29, 43,

187–191] of JJ due to proximity induced superconductivity [30, 40, 41]. As first pointed out by

Beenakker [83], compared to other weak links, the Josephson effect in SGS junctions can be

attributed to both specular Andreev reflection (SAR) and conventional retro Andreev reflection

(RAR) [183, 192], due to the peculiar quasiparticle dispersion in graphene [193–196]. Tunabil-

ity of JC in such junctions using different means is therefore desirable for wider applicability

of such devices.

In this chapter, we show that the temperature-dependent JC in such SGS junctions can be

made more tunable for possible device applications by exposing the graphene region to a reg-

ularly spaced highly localised magnetic field typically dubbed in the literature as magnetic

barriers [59, 61–63, 74, 197, 198]. In our proposed model, such SGS junctions are exposed

https://doi.org/10.1088/1402-4896/ad9c23


Superconductor Superconductor

(S) (S)

(a)

(b) (c)

0 L 0 L

FIG. 4.1: In (a) the schematic depiction of the SGS type JJ with periodic electric and magnetic
field. in the graphene region is shown. In the regions between the red and blue mag-
netic stripes a non zero electric field (V0) is also considered. In (b) we compare the
perpendicular magnetic field profile as seen by the massless Dirac fermions for differ-
ent values of z0. This can be done by changing the distance between the ferromagnetic
stripe and the graphene sheet. The corresponding magnetic vector potential is shown
in (c). As z0 is reduced the magnetic field barriers become more close to a perfectly
rectangular barrier. This figure is taken from our published work [45].

to magnetic barriers that can be created by putting a ferromagnetic stripe on top of the surface

of graphene region [64, 65]. In experiments, such metallic stripes have been made by NdFeB

[64], Co [65]. They emit a strong magnetic field to create this highly inhomogeneous magnetic

field which breaks the time reversal symmetry in the graphene region explicitly. Using these

stripes, a magnetic vector potential barrier can be created where two of such stripes produce

a strong magnetic fields of equal magnitude, but in mutually opposite directions [66] which is

transverse to the plane of the graphene layer as depicted in FIG. 4.1 (a). In graphene, using a

fully scalable photolithographic process, Co based ferromagnetic layer has been deposited to

make a magnetic tunnel junction [67–69, 80]. This makes the synthesis of such magnetically

modulated SGS junctions a realistic possibility.

Because of the ultra-relativistic dispersion of the charge carriers in monolayer graphene,

the strength of such magnetic barriers can be additionally tuned by an electrostatic barrier [11,

70, 71, 110]. These potential barriers can be created by putting a gate voltage to create a p-

n junction in graphene [7, 20, 72]. Array of such barriers can be viewed as a realisation of

magnetic Kronig-Penny model [62, 74, 198]. They consequently modify the band structure,

thereby impacting Andreev reflection [192] in such relativistic Josephson junction. This, in

turn, changes the JC flowing through such JJs. The combined electrostatic and magnetic barrier

is schematically depicted in FIG. 4.1 (a).

JJs with high transition temperature (TC) and higher superconducting energy gaps provide

advantages for qubit applications involving graphene, as they are operable for higher tempera-
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ture range. Superconductors with Al [199–201], W [40], Pt/Ta [202] and Pb1–xInx [203] as su-

perconducting electrodes has been used in experiments to make Josephson junctions. Keeping

that in mind, in our calculations, we consider the superconducting gap for Pb0.93In0.07 electrode

at 1.1 meV and the transition temperature at 7.0 K [203]. It may be noted that even though Pb

(TC = 7.19K) and In (TC = 3.4K) are type-I superconductors, their alloy becomes a type-II

superconductor. The transition temperature also depends on their composition [204].

In realistic graphene-based Josephson junctions, disorder arising from charged impurities,

atomic vacancies, edge roughness, and substrate-induced potential fluctuations can induce inter-

valley scattering, suppress carrier mobility, and reduce phase coherence, thereby modifying the

Andreev bound state spectrum and suppressing the critical Josephson current [205, 206]. Such

disorder effects can be quantitatively understood using tight-binding Bogoliubov–de Gennes

simulations, recursive Green’s function methods, or self-consistent Born approximation tech-

niques, which allow computation of disorder-averaged supercurrents and density of states in

mesoscopic graphene systems [132, 207].

The rest of the chapter is organized as follows. The formalism and the DBdG equations in

the three types of regions are discussed in Sec. 4.2. In Sec. 4.3, we discuss the solutions of

the DBdG equation in three regions we are considering. In Sec. 4.4 we discuss the electronic

analogue of the Snell’s law in the magnetically modulated graphene region and their impact on

the Andreev refelction. In Sec. 4.5 we calculate the transfer matrices from the boundary value

conditions. The method to calculate the ε − ϕ relation for these systems is shown in Sec. 4.6.

The Josephson current for both SAR and RAR regimes, and how the Josephson current can be

modulated by the geometry and the magnetic barrier is discussed in Sec. 4.7. In Sec. 4.8, we

summarize the results obtained in this chapter.

4.2 Superconductor-Graphene-Superconductor Junctions in

the Presence of Electric and Magnetic Barrier in the Graphene

Region

The system under consideration is a two-dimensional monolayer graphene (MLG) in the x-

y plane, which is covered with a superconducting electrode in two regions (x < 0 and x >
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L) (see FIG. 4.1 (a)). The regions under superconducting electrode become two-dimensional

superconductors due to the proximity effect [41, 83, 188]. Due to the difference between the

phases of the two superconductors (ϕ), a dissipation-less current flows in these systems which

is periodic in ϕ [81]. The non-superconducting graphene region in between (0 ≤ x ≤ L), is

exposed to ferromagnetic stripes with thickness d and height h, that are deposited on top of the

two-dimensional graphene sheet with magnetization parallel [67] to the plane of the MLG.

If the graphene layer is situated at distance z0 below the stripe then the magnetic field in the

perpendicular direction can be written by [208] Bz ẑ = ẑK(x, z0) where,

K(x, z0) = B0

[

z0d

x2 + z20
− z0d

(x− d)2 + z20

]

(4.1)

The profile magnetic vector potential corresponding to this magnetic field takes form of a bar-

rier, that shifts the momentum of the charge carriers. A series of N such magnetic vector

potential barriers can be created, where the successive barriers are separated by a distance D.

The resulting magnetic field becomes,

Bz ẑ = ẑ
N−1
∑

m=0

K [x− (m+ 1)D + d, z0] . (4.2)

For N such barriers in graphene region with uniform spacing between them, L = ND + (D −
d), where both d and D ( defined in the figure) varied in a given situation to achieve wider

tunability. The magnetic field profile is shown in FIG. 4.1(b) and the corresponding magnetic

vector potential in Landau gauge, A = ŷAy is shown in FIG. 4.1 (c). For a typical value of

B0 = 0.1 T [208–210], which depends on the magnetization(M0), height (h) and thickness (d)

of the stripe as B0 = M0h/d, outside the magnetic barrier regime the magnetic field is several

orders of magnitude less than the critical field of Pb0.93In0.07 electrode that we are considering

[203]. A typical value for B0 can be inferred from the fact that magnetic fields upto the order

of ≈ 1T [80] has been used to create Co based magnetic tunnel junctions in graphene. In an

experimental setup, the magnetic potential profile can be changed by changing the parameters

z0 and d as shown in FIG. 4.1 (b). Typically, the Fermi energy of pristine monolayer graphene

is ∼ 27 meV [211], and the corresponding Fermi wavelength λF ∼ 152 nm. This Fermi energy

can further be shifted by doping [211, 212]. If z0 ≪ λF in a typical experimental situation,

the magnetic barrier is highly localised, and a z0 → 0 limit can be assumed to facilitate the
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subsequent analysis. In the limit z0 → 0, the magnetic field profiles become delta functions,

and the corresponding magnetic vector potentials approaches a perfect rectangular barrier. We

perform our further calculation in this limit, and the approximated vector potentials are shown

by the black curve in FIG. 4.1 (c).

To proceed further we write the magnetic vector potentials in Landau gauge as,

A(x) =



























ŷBlm in the barrier region (nD − d) < x < nD,

0 in the G region (n− 1)D < x < (nD − d),

0 in the S region x < 0 and x > L.

(4.3)

Here, n = 1, 2, ...N , lm =
√

ℏc
eB

is the magnetic length. As suggested in the introduction,

for 0 ≤ x ≤ L, we additionally consider a series of electrostatic potential barriers coupled with

the magnetic barriers with the same width d and height V (V > 0) [110]. These electrostatic po-

tentials can be created by putting a series of electric gates [7, 11, 20, 70–72]. Such gate-defined

electrostatic barriers have been experimentally demonstrated to create graphene p-n junctions in

graphene [71, 72, 213]. In a realistic sample, for a finite distance between the graphene sample

and the local gate (dt), the edge of the barrier on both sides can be approximated as a linear

function of width δ [214–216]. The electrostatic potential created by one such barrier of width

d centred at x = 0 can be written as,

V (x) =







































0 at,|x| > d+ δ,

V0

δ
(d+ δ)− V0

δ
x at,d < x < d+ δ,

V0 at,|x| < d,

V0

δ
x+ V0

δ
(d+ δ) at, − d < x < −(d+ δ)

(4.4)

In a typical experimental setup, we generally have δ in the range of a few tens of nanometers

and d is in the range of a few micrometres. This makes δ ≪ d [215]. Also, the mean free path of

the charge carriers of graphene is several micrometres [129, 193, 217]. Thus a leading approx-

imation we can ignore terms dependent on δ/d, which gives us a rectangular scalar potential

barrier. Further calculations are done in this limit. In FIG. 4.2, we show the scalar potentials

created by three such electrostatic gate-defined scalar potential barriers for different values of
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FIG. 4.2: In this figure, we show the scalar potential profile seen by the massless Dirac fermions
in graphene created by electrostatic gate-defined potential barriers for different values
of δ/d. This figure is taken from our published work [45].

δ/d. The black curve in FIG. 4.2 shows the approximation we have taken. An additional con-

stant electrostatic potential −U0, whose value can be adjusted by an external gate potential or

by doping [83] in the superconducting region , is also introduced to offset the difference in elec-

trostatic potential in the superconducting region and the graphene region. The resulting scalar

electrostatic potential is given by

V (x) =



























−U0 in the S region x < 0 and x > L,

0 in the G region (n− 1)D < x < (nD − d),

V in the barrier region (nD − d) < x < nD.

(4.5)

The dynamics of charge carriers, namely the electron and hole excitations, in such SGS

junction can be described by Dirac-Bogoliubov-De-Gennes (DBdG) equation [29, 83–86], and

can be written as




H− µ ∆(T )

∆∗(T ) µ− T HT −1









Ψe

Ψh



 = ε





Ψe

Ψh



 (4.6)

Here H is the (4×4) Dirac Hamiltonian for the charge carriers in graphene under effective mass

approximation, namely massless Dirac fermions, in the presence of the electrostatic potential

V (x) and magnetic field B, which acts on two sub-lattice and two valley degrees of freedom

for such charge carriers. vF is the Fermi velocity, ∆(T ) is the temperature dependent supercon-

ducting pair potential which couples the time reversed electron and hole states. For our present
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FIG. 4.3: In (a) we show the plot of sin(αE) calculated from the Snell’s law in the RAR (µ≫ ε)
regime for as a function of α using the red curve. In the red curve we show the
dependence of refractive index of the barrier region on α for a barrier with κlm =
0.5 and κV = 0.25. In (b), we have plotted the values of barrier potential (V ) and
magnetic length (lm) which share the given values of refractive index (nE) for α =
π/8. Here µ and λF is the Fermi energy and the Fermi wavelength of the barrier free
region (G). In (c) we show the propagation of electron and hole for the same barrier
in the RAR regime. In the schematic diagram, a hole following path BA undergoes
RAR in the GS interface at point A. Due to RAR, a reflected electron traces back
the path of the incident hole AB with α = 10◦ and in the barrier region(E) acts as
a medium with lighter refractive index (nE) and the electron goes through BC path
with αE = 19.73◦ and then again CD path through the G region with αE = 10◦. After
that at point D, the electron undergoes RAR in the GS boundary and again reflects
back as a hole. In (d), we show the schematic diagram for the propagation of electron
and hole for the same barrier in the SAR regime. A hole from path AB with angle
α′ = 10◦ undergoes SAR in the GS interface at B and reflects back as an electron with
α = 10◦. As the refractive index of the barrier region becomes nE ≈ 1 in the SAR
regime, the reflected electron traces path BCDE and undergoes SAR and a reflected
hole travels through EF direction. The blue solid circle denotes a hole and an electron
is represented by a red solid circle. This figure is taken from our published work [45].
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analysis, we consider s-wave pair potential such that

∆(T ) =



























∆0(T )e
iϕ1 at, x < 0

0 at, 0 < x < L

∆0(T )e
iϕ2 at, x > L.

(4.7)

This can be generalised for more complicated pairing potential. The temperature dependence

of such superconducting pair potential is given by [218],

∆0(T ) = ∆0(T = 0)

√

1−
(

T

TC

)2

, (4.8)

where critical temperature of a superconductor is given by TC . T is the time-reversal operator

and ε is the excitation energy measured relative to the Fermi energy µ. Ψe and Ψh represent

the electron and hole excitations. The time-reversal operator which interchanges the valleys is

given by [29, 83, 100],

T =





0 σz

σz 0



C = T −1. (4.9)

Here, C is the complex conjugation operator. As the pair-potential ∆(T ) is same for both

sub-lattice and valley degrees of freedom, in the presence of a magnetic field, it is more conve-

nient to use a "valley-isotropic" basis for the Hamiltonian [86] by making a unitary transforma-

tion to both the Hamiltonian and the time-reversal operator H = UHU † and T = UT U † with

U = 1
2
(τ0 + τz) ⊗ σ0 +

1
2
(τ0 − τz) ⊗ σx. σi and τi are the Pauli spin matrices which act on

the sub-lattice and valley degrees of freedom respectively. Also, τ0 and σ0 represent 2× 2 unit

matrices. Upon these transformations the Hamiltonian now becomes,

H = vF





[

(p+ eA) · σ + V (x)
vF

]

0

0
[

(p+ eA) · σ + V (x)
vF

]





= vF τ0 ⊗
[

(p+ eA) · σ +
V (x)

vF

]

. (4.10)
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(b)(a) (c) (d)

FIG. 4.4: The ε−ϕ relation for SG(EG)nS for retro and specular Andreev reflection is shown in
(a),(b) and (c),(d) respectively. In (a) we show the ε − ϕ relation for different values
α for κ = 1, κV = 0.5, n = 10 and κlm = 3. In (b) the ε−ϕ relation is shown in case
of RAR for different values of n and for κ = 1, κV = 0.5, κlm = 3 and α = π/4. For
the case of SAR, we show the ε−ϕ relation for different values of α in an SG(EG)nS
junction with κ=1, κV = 0.5, κlm = 1 and n = 10. ε− ϕ relation is plotted in (d) for
the case of SAR for different values of n for κ = 1, κV = 2, κlm = 2 and α = π/4.
This figure is taken from our published work [45].

The time-reversal operator now becomes,

T =





0 iσy

−iσy 0



C = −(τy ⊗ σy)C. (4.11)

Using the Hamiltonian and the time-reversal operator from the Eq. (4.10) and (4.11) in the

Dirac Bogoliubov De Gennes (DBdG) equation Eq. (4.6) in the presence of external potential

V (x) and magnetic vector potential A(x) as,





vF τ0 ⊗
[

π · σ + V (x)
vF

− µ
vF

]

∆(T )

∆∗(T ) −vF τ0 ⊗
[

π̄ · σ + V (x)
vF

− µ
vF

]









Ψe

Ψh



 = ε





Ψe

Ψh



 (4.12)

Where π = (p + eA(x)) and π̄ = (p − eA(x)). The scalar potential V (x) does not

invert the sign, but the magnetic vector potential A changes the sign under the time reversal

operation [219]. We need the solutions for the DBdG equation in our system for energies below

the superconducting gap (∆0(T )) of the superconductor.

The Josephson current depends on the phase difference between the two superconducting

regions (ϕ = ϕ2 − ϕ1). Here if we define the electron and hole excitations Ψe and Ψh as,
[

ψe1 ψe2 ψe3 ψe4

]T

and
[

ψh1 ψh2 ψh3 ψh4

]T

then it is sufficient to calculate the solu-
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(b)(a) (c) (d) (e)

FIG. 4.5: In (a) we show the ϕ and T dependence of the Josephson current. For a constant
temperature, the Josephson current is periodic in ϕ for an SG(EG)nS type Josephson
junction with n = 10 in the RAR regime. In this case, we have taken, κlm = 2.0 and
κV = 0.5. In (b) we show the Josephson Current as a function of ϕ and the strength
of magnetic barrier (κlm). We can observe from the 3D plot that for a constant value
of ϕ, the Josephson current decreases with the increasing κlm. In (c) we show the
cross-sectional plots to highlight this behaviour. In (d) we combine the effect of κlm
and the ratio of size of EVMP regions and pure-graphene regions for an SG(EG)nS
type Josephson junction in the same RAR regime. In (b), (c) and (d), we have taken,
κV = 0.5. In (e) we plot the Josephson current for different values of κV with ϕ for
κlm = 2.0. In all these cases we have fixed κ = 1. This figure is taken from our
published work [45].

tions of ψe1, ψe2, ψh1 and ψh2 from Eq. (4.6) because of the basis we have chosen. From these

solutions, the full (8× 1) wave function can be evaluated by

Ψ =





















Ce1

Ce2



⊗





ψe1

ψe2









Ch1

Ch2



⊗





ψh1

ψh2





















(4.13)

Now the (8 × 8) DBdG equation transforms into two equivalent four-dimensional DBdG

equation,











V (x)− µ vF (πx − iπy) ∆(T ) 0

vF (πx + iπy) V (x)− µ 0 ∆(T )

∆∗(T ) 0 µ− V (x) −vF (π̄x − iπ̄y)

0 ∆∗(T ) −vF (π̄x + iπ̄y) µ− V (x)





















ψe1

ψe2

ψh1

ψh2











= ε











ψe1

ψe2

ψh1

ψh2











(4.14)
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4.3 Solutions of DBdG Equation

The wave-functions in the three types of region considered can be calculated for a given value

of ε, q and ϕ from Eq. (4.14).

4.3.1 Superconducting Region

In the superconducting region, the DBdG equation from Eq. (4.14) is given by,

















−µ− U0 vF (px − ipy) ∆0e
iΦ 0

vF (px + ipy) −µ− U0 0 ∆0e
iΦ

∆0e
−iΦ 0 µ+ U0 −vF (px − ipy)

0 ∆0e
−iΦ −vF (px + ipy) µ+ U0

































ψe1

ψe2

ψh1

ψh2

















= ε

















ψe1

ψe2

ψh1

ψh2

















(4.15)

Here, Φ is the superconducting phase. The possible solutions in the regime of U0 + µ ≫
∆0, ε are given by

ψ1(Φ) = eiqy+ikox−kix

















eiβ

eiβ+iγ

e−iΦ

e−iΦ+iγ

















, (4.16a)

ψ2(Φ) = eiqy+ikox+kix

















e−iβ

e−iβ+iγ

e−iΦ

e−iΦ+iγ

















, (4.16b)

ψ3(Φ) = eiqy−ikox−kix

















e−iβ

−e−iβ−iγ

e−iΦ

−e−iΦ−iγ

















, (4.16c)
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ψ4(Φ) = eiqy−ikox+kix

















eiβ

−eiβ−iγ

e−iΦ

−e−iΦ−iγ

















. (4.16d)

where,

β =







cos−1
(

ε
∆o

)

if ε < ∆o

−i cosh−1
(

ε
∆o

)

if ε > ∆o

(4.17)

γ = sin−1

[

ℏvF q

Uo + µ

]

(4.18)

ko =

√

(

Uo + µ

ℏvF

)2

− q2 (4.19)

ki =
(Uo + µ)∆o

ℏ2v2Fko
sin β (4.20)

In the regime of |q| ≤ µ
ℏvF

and if we take Uo ≫ µ, ε then, γ → 0, ko → Uo

ℏvF
and

ki → ∆o

ℏvF
sin β. In the region x < 0, (i.e.,left superconductor), the wavefunction is Ψl =

a1ψ2(ϕ1) + a2ψ4(ϕ1). In the region x > L, (i.e.,right superconductor) the wave-function is

Ψr = b1ψ1(ϕ2) + b2ψ3(ϕ2).

4.3.2 Outside the EMVP Barrier

Outside the EMVP barrier in the graphene region, the wave-functions are given by,

ψe+ =
eiqy+ikx

√
cosα

















e−
iα
2

e
iα
2

0

0

















, (4.21a)
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ψe− =
eiqy−ikx

√
cosα

















e
iα
2

−e− iα
2

0

0

















, (4.21b)

ψh+ =
eiqy+ik′x

√
cosα′

















0

0

e−
iα′

2

−e iα′

2

















, (4.21c)

ψh− =
eiqy−ik′x

√
cosα′

















0

0

e
iα′

2

e−
iα′

2

















. (4.21d)

Where,

α = angle of incidence of electron = sin−1
[

ℏvF q
ε+µ

]

,

α′ = angle of reflection of hole = sin−1
[

ℏvF q
ε−µ

]

,

q = transverse wave vector in this region,

k = longitudinal wave vector of electron =
(

ε+µ
ℏvF

)

cosα ,

k′ = longitudinal wave vector of hole =
(

ε−µ
ℏvF

)

cosα′ .

The wavefunction in this region is a linear superposition of all four basis states in Eq. (4.21)

4.3.3 Inside the EMVP barrier

Inside the EMVP barrier in the graphene region, the wave-functions are given by,
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ψe+
E

=
eiqy+ikEx

√
cosαE

















e−
iαE
2

e
iαE
2

0

0

















, (4.22a)

ψe−
E

=
eiqy−ikEx

√
cosαE

















e
iαE
2

−e−
iαE
2

0

0

















, (4.22b)

ψh+
E

=
eiqy+ik′Ex

√

cosα′
E

















0

0

e−
iα′

E
2

−e
iα′

E
2

















, (4.22c)

ψh−
E

=
eiqy−ik′Ex

√

cosα′
E

















0

0

e
iα′

E
2

e−
iα′

E
2

















. (4.22d)

Here,

sin(αE) =





ℏvF

(

q + 1
lm

)

ε− V + µ



 (4.23a)

cos(αE) =

(

ℏvFkE
ε− V + µ

)

(4.23b)

sin(α′
E) =





ℏvF

(

q − 1
lm

)

ε− µ+ V



 (4.23c)

cos(α′
E) =

(

ℏvFk
′
E

ε− µ+ V

)

(4.23d)

Here also the wave-function in this region is a linear superposition of all four basis states in
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Eq. (4.22).

4.4 Snell’s law

The two superconductors at the two ends of our system acts as Andreev reflectors for the

graphene electrons as depicted in FIG. 4.3 (b) and (c). When an electron encounters the

graphene (G)- superconductor(S) interface, it is reflected as a hole and a hole is reflected as

an electron [83, 101]. Between these two reflectors, the barriers (E) in the graphene region now

act as mediums with modulated refractive index.

The solutions of the DBdG equation in all the regions is discussed in detail in Sec. 4.3.

Using the properties of these wavefunctions, we can get Snell’s law for graphene electrons

propagating from the free region to the barrier region. The direction of the propagation of

electron and the hole can be obtained from their respective wavefunctions. If the angle of

propagation of graphene electron with respect to normal direction in free region and the barrier

region is α and αE respectively, then for the case of RAR (µ ≫ ε), the electronic analogue of

the refractive index in the G region that captures the effect of the barriers in this region can be

gives as

nE =
sin(α)

sin(αE)
=

(

1− V
µ

)

kF lm sin(α)

1 + kF lm sin(α)
. (4.24)

In FIG. 4.3(a) we have shown the value of sin(αE) calculated from the Snell’s law defined

in Eq. (4.24).

For the case of RAR, the critical angle of incidence for graphene electron is,

αC = sin−1

(

1− V

µ
− 1

kF lm

)

. (4.25)

Beyond the critical angle of incidence the propagating solution representing scattering states in

the G region become evanescent waves ( bound states). Their hybridization with the Andreev

bound states may lead to interesting features somewhat akin to the one studied in electron

transport in SGS type of JJs in the presence of uniform magnetic to detect the valley polarisation

of edge states produced in the graphene region[86]. We shall not discuss this issue any further

in the current work and will shelve it for future work. Eq. (4.24) that gives the electronics
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analogue of Snell’s law shows that different values of electrostatic barrier potential (V) and

magnetic length (lm) can give the same refractive index (nE) for a given angle of propagation

α. which can be expressed as

V2 = µ

[

1 +

(

V1
µ

− 1

)](

lm1

lm2

)[

1 + kF lm2 sinα

1 + kF lm1 sinα

]

. (4.26)

To elucidate this issue further in FIG. 4.3 (b), we have plotted the values of barrier potential

(V ) and magnetic length (lm) with which a given refractive index (nE) can be achieved for a

given angle of propagation (α). The interconvertibility between the electric and magnetic field

as they are applied to charge carriers in graphene that are massless Dirac fermions was studied

extensively in various contexts in a number of earlier works [110, 220, 221]. In the current work

we demonstrate its implication for JC through SGS junctions.

In FIG. 4.3 (c) we have depicted a schematic diagram of motion of electron and hole in

the RAR regime. In case of RAR, the reflected electron/hole traces back the path of incident

hole/electron. The E region in this figure is the barrier region. It acts as a rarer medium com-

pared to the G region for all possible angles of α as shown in FIG. 4.3 (a). However, for the

case of SAR (µ≪ ε), we have,

nE =
sin(α)

sin(αE)
≈ 1. (4.27)

After traveling through the barrier region with α < αC , the charge carriers in graphene again

moves with the same angle of propagation α. The propagation of electrons and holes in the SAR

regime is schematically depicted in FIG. 4.3 (d). In this case, the angle of reflection in the GS

interface is same as angle of incidence, as happens in specular optical reflection. Again, when

the graphene electron encounters the superconducting surface, only the electrons with angle of

propagation(α) less than αA = sin−1(|ε− µ|/ε+ µ) undergoes Andreev reflection [83].

4.5 Wavefunctions and boundary value conditions

From the DBdG equation Eq. (4.14), we get four plane wave solutions for all the three types of

regions, i.e.,superconducting region, graphene region both outside and inside the barrier regime.

In Eq. (4.14) let us define u =
[

ψe1 ψe2

]T

and v =
[

ψh1 ψh2

]T

. The solutions of the DBdG
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equation for a given value of ε and q are shown in Sec. 4.3. Using the wave functions we can

evaluate some boundary value conditions to make transfer matrices in this system. As we are

considering the Andreev bound state spectrum i.e.,ε < ∆0(T ) at the GS interface, the electron

and hole part of the wave-function of DBdG equation Eq. (4.14) is related by [29]

v(x = 0) = e−iϕ1+iβσxu(x = 0) (4.28a)

u(x = L) = eiϕ2+iβσxv(x = L) (4.28b)

where eiβσx =





cos(β) i sin(β)

i sin(β) cos(β)



 and ϕ1,2 are the phases of superconductors. β in this

case is defined by cos β = ε/∆0(T ) and the range of β is
(

−π
2
, π
2

)

.

In the graphene region outside each barrier, the two ends of the region (i.e.,x = (n − 1)D

and x = nD − d) are related by [29],

v [x = (n− 1)D] =M2 (ε, q) v [x = nD − d] (4.29a)

u [x = nD − d] =M1 (ε, q) u [x = (n− 1)D] (4.29b)

Here, M1 (ε, q) = Λ1e
−ik(D−d)σzΛ1 and M2 (ε, q) = Λ2e

−ik′(D−d)σzΛ2. Also, k and k′ is the

wave vector in x direction i.e.,the longitudinal wave vector for electron and hole excitations

respectively, Λ1 and Λ2 are (2× 2) matrices given by:

Λ1 = Λ−1
1 =

1√
2 cosα





e−iα/2 eiα/2

eiα/2 −e−iα/2



 (4.30a)

Λ2 = Λ−1
2 =

1√
2 cosα





eiα
′/2 e−iα′/2

e−iα′/2 −eiα′/2



 (4.30b)

with, sin(α) =
ℏvF q

ε+ µ
, sin(α′) =

ℏvF q

ε− µ
(4.30c)

The angle α, α′ (0, π
2

)

are the angles of incidence and reflection of the electrons and holes

respectively in the NS interface. Contrary to an SGS junction in the absence of any magnetic
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barrier[29], in our case due to the presence of non-zero magnetic vector potential in the barrier

region (E), the parallel component of the wave vector changes when it comes from the barrier-

free region (G). In Eq. (4.22) in Sec. 4.3, we show the wavefunctions in the barrier region. By

comparing the wavefunctions at the two ends of n’th barrier (x = nD − d and x = nD) we

show that they are related by

v(x = nD − d) =M2E (ε, q) v(x = nD) (4.31a)

u(x = nD) =M1E (ε, q) u(x = nD − d) (4.31b)

Here M1E (ε, q) = Λ1Ee
−ikEdσzΛ1E and M2E (ε, q) = Λ2Ee

−ik′EdσzΛ2E . Also, kE and k′E

are the wave vectors in the x direction for electron and hole excitations inside the barrier, and

Λ1E and Λ2E are (2× 2) matrices.

Λ1E = Λ−1
1E =

1√
2 cosαE





e−iαE/2 eiαE/2

eiαE/2 −e−iαE/2



 (4.32a)

Λ2E = Λ−1
2E =

1
√

2 cosα′
E





eiα
′
E/2 e−iα′

E/2

e−iα′
E/2 −eiα′

E/2



 (4.32b)

sin(αE) =





ℏvF

(

q + 1
lm

)

ε− V + µ



 , sin(α′
E) =





ℏvF

(

q − 1
lm

)

ε− µ+ V



 (4.32c)

By comparing the angles α and αE from Eq. (4.30) (c) and Eq. (4.32) (c) we observe that q

is replaced by q ± 1/lm for electrons and holes respectively.

4.6 Dispersion (ε− ϕ)relation

Let us consider n electrostatic and magnetic vector potential (EMVP) barriers of width d in the

graphene region of the SGS junction separated by a distance D such that L = ND + (D − d).

The condition for a bound state in this system is that the transfer matrix for a round trip from

x = 0 to x = L and again from x = L to x = 0 to be a unit matrix of dimension (2 × 2) [29].

Using Eq. (4.28a), (4.35) and (4.31) it can be shown that this condition results in,
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(a) (b) (d)(c)

FIG. 4.6: In (a) the Josephson Current is plotted with its dependence on ϕ for an SG(EG)nS
type Josephson junction with n = 10 in the SAR regime for different values of tem-
perature while keeping κlm = 10 and κV = 2. In (b) we show the Josephson current
for different values of κlm and temperature (T ) for ϕ = 2π/3 and κV = 2 . We can
observe that as we are in the short junction limit, the κlm does not impact the Joseph-
son current. In (c) we show the temperature dependence of the Josephson current in
the SAR regime for different values of ϕ for κV = 2 and κlm = 10. In (d) the Joseph-
son current is plotted with r for different values of ϕ again for the SAR regime while
keeping κlm = 10 and κV = 2. In all these cases we have taken κ=1 . This figure is
taken from our published work [45].

Det
[

I2 − eiϕT (ε, q)
]

= 0 (4.33a)

T (ε, q) =M1(ε, q) [M1E(ε, q)M1(ε, q)]
n eiβσx [M2(ε, q)M2E(ε, q)]

nM2(ε, q)e
iβσx (4.33b)

This equation can be solved for any value of ε, q and ϕ. The ε− ϕ relation calculated from

Eq. (4.33a) can be written as an equation for a conic section [222] for a fixed value of ϕ,

A− By2 + Cxy + cos(ϕ) = 0 (4.34)

whereA,B, C andD are constants which depend on the parameters defining and characterising

the barrier regime (such as κV = V
µ

, κlm = λF

lm
, κ = µd

ℏvF
and the angles α and α′), x =

sin(ε/∆0) and y = cos(ε/∆0). Here λF is the Fermi wavelength in the barrier free graphene

region (G) of our system. From Eq. (4.34), we can numerically evaluate ε/∆0(T ) as a function

of ϕ to write as

εn
∆0(T )

= gn(ϕ, κ, κV , κlm, α, α
′). (4.35)

Here, gn(ϕ, κ, κV , κlm, α, α′) is numerically as the nth solution of Eq. (4.33a) and Eq. (4.33b)

for given values of ϕ, κ, κV , κlm, α and α′. There are two regimes of energy which are inter-
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esting to study, retro Andreev reflection (RAR) and specular Andreev reflection (SAR). RAR

dominates in the superconductor-graphene junctions when µ ≫ ∆0(T )[83]. From Eq. (4.30c),

we can see that in this regime α′ = −α. In the regime of µ ≪ ∆0(T ), the SAR dominates.

From Eq. (4.30c), we can show that in the SAR regime α′ = α. In FIG. 4.4 (a) and (b) we show

the ε−ϕ relation for the RAR regime and in (c) and (d) we show the ε−ϕ relation for the SAR

regime. As a prototype case, for 10 such barriers inside the graphene region of the SGS junction,

we can observe that the ϕ dependence on ε for α ̸= 0, is asymmetric with respect to ε = 0 in

our system. This is not the case in normal SGS junctions. For α ̸= 0, the gap opens at ϕ = 0. In

(b) we show the dependence of the ε− ϕ relation on the number of barriers we have considered

in the graphene region. As we increase the number of barriers, the two values of energy for a

fixed value of ϕ come closer. As the number of barriers increases, multiple scattering reduces

the effective transparency and quasiparticles undergo multiple refraction, thereby suppressing

the Andreev bound state energies and lowering the overall energy scale of the system. In (c) we

show the ε − ϕ relation for the SAR regime. Again, similar to RAR we can see for α = 0 the

gap closes. Again in (d) we show the dependence of the number of barriers for the ε−ϕ relation

in the SAR regime. As we see in the next section 4.7, this change in the dispersion strongly

influences the Josephson current in the presence of such barriers and provides us a way to tune

the junction properties.

4.7 Josephson Current

Josephson current I across this junction at a temperature T is given by [29, 85, 182, 223]

I(ϕ, T ) =
4e

ℏ

∑

n

kF
∑

q=−kF

(

∂εn
∂ϕ

)

f(εn), (4.36)

where f(εn) is the Fermi distribution function given by f(εn) = 1/ [exp{εn/kBT}+ 1] and

kB is the Boltzmann constant. The partial differential term in Eq. (4.36) is calculated from

Eq. (4.35) as,
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(

∂εn
∂ϕ

)

=



∆0(T = 0)

√

1−
(

T

TC

)2




∂gn
∂ϕ

(4.37)

From Eq. (4.37), we can see that the temperature dependence of the current is dominated by

the
√

1− (T/TC)
2 term. This makes the critical value of the periodic (in ϕ) Josephson current

decrease with temperature. And at T = TC , as the superconductivity is destroyed, we can also

see that the Josephson current also becomes zero. In FIG. 4.5 (a) we plot the Josephson current

as a function of ϕ for different temperatures in the RAR regime. As predicted earlier, we see

that for higher values of temperature, the Josephson current is reduced in this regime. In (b)

and (c), we show the effect of strength of magnetic barrier on the Josephson current using a 3D

plot and 2D plot respectively in the RAR regime. The magnetic barrier has a pronounced effect

on the magnitude of the Josephson current. We define the ratio of the length of barrier region

(E) and the barrier free graphene region (G) as r. By combining the effect both this ratio r and

the strength of the magnetic field (κlm) we show in (d) how the Josephson current can be tuned.

In (e) we show the effect of κV , which denotes the strength of the electrostatic scalar potential,

on the Josephson current. Here, I0 =
8ekF∆0(T=0)

ℏ
and for demonstrative purpose in all of these

cases, we have considered 10 EMVP barriers inside the graphene region of the SGS junction.

For the SAR regime, we show the Josephson current in FIG. 4.6 (a) for different tempera-

tures. As discussed earlier, in SAR regime also, the Josephson current reduces with increasing

temperature. In (c) we show the temperature dependence of the Josephson current for differ-

ent values of ϕ. We can see that because of the
√

1− (T/TC)
2 term, the Josephson current

decreases with temperature and goes to zero at the critical temperature. In the short junction

limit, the SAR current does not depend on the strength of the magnetic barrier (κlm), unlike the

RAR case which is shown in (b). This happens because the transfer matrices M1E and M2E in

Eq. (4.33a) become unit matrices in this limit. Also, we can observe from the Snell’s law in

the SAR regime Eq. (4.27) that the refractive index of the barriers approaches unit value in the

SAR regime, thereby making the magnetic barrier transparent to the Josephson current in the

SAR regime.

The thermal fluctuations in such JJs can be studied in the framework of the Stewart-McCumber

or Resistively and Capacitively Shunted Junction(RCSJ) [224, 225] model. The thermal fluc-

tuations become very important in the case of the ac-Josephson effect. In the RCSJ model,

the resistance accounts for the dissipative processes, and the capacitor represents the junction’s
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capacitance. The Josephson junction is modelled with a parallel combination of the resistance

and capacitor. At finite temperatures, thermal fluctuations can cause premature switching from

the superconducting state to the resistive state. In our present analysis, we do not consider the

effects of thermal fluctuation, which gives a good approximation for lower temperatures where

thermal energy is significantly smaller than the Josephson energy [226]. Also in our current

study, we did not consider any effect of impurity and defects in graphene. Impurities or doping

can make local p or n-type regions [227] in graphene which could create additional scattering

centers and potentially reduce the Josephson current. The vacancy-type defects in graphene can

also decrease the Josephson current by reducing carrier mobility [228, 229].

The temperature dependence of the critical current has been observed in various graphene-

based SGS-type Josephson junctions [230, 231]. We have shown using our theoretical analysis

that in the presence of the electrostatic and magnetic barriers, similar temperature dependence

will still be observed with our model. However, the presence of barriers gives extra control of

the Josephson current in the RAR regime as shown in FIG. 4.5. This happens due to the change

of wave vector following Snell’s law given in Eq. (4.24). Experimentally the potential barriers

in graphene have been demonstrated [11, 71, 213] to study the scattering of charge carriers

of graphene and its impact on electron transport. On the other hand, using a fully scalable

photolithographic process, the tunnel junctions in graphene have been experimentally realized

by depositing Co based ferromagnetic layers [67–69, 80]. We hope the present study can guide

us to combine these two to create the possibility of new device applications with the help of

proximity-induced graphene-based Josephson Junctions [199, 200, 232, 233].

4.8 Conclusion

To conclude we have shown that the Josephson current in a SGS junction can be significantly

tuned by magnetically modulate the graphene regime. Additionally the strength of this magnetic

barrier can be tuned by introducing gate voltage. This combination thus provides an important

tuning parameter to control Josephson current through such junctions and indicates possibility

of interesting device applicability. Following the work on electron transport in SGS type of

JJs in the presence of uniform magnetic field that shows hybridisation of edge states in the

graphene region with andreev bound state [86], superposition of the uniform magnetic field and
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the magnetic barrier in the graphene region [234] are expected to show rich physics with wider

possibility of device application. This could be an interesting topic for future research in this

direction.
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CHAPTER 5

Intermediate chiral edge states in quantum Hall Josephson

junctions

This chapter is based on the published work - “Intermediate chiral edge states in quantum

Hall Josephson junctions”, Partha Sarathi Banerjee, Rahul Marathe and Sankalpa Ghosh, arXiv:

2510.11432.

5.1 Introduction

In superconductor-quantum Hall-superconductor (SQHS) Jospehson junctions (JJ) [235, 236],

the Josephson effect occurs due to Andreev reflection in high magnetic fields [75, 237–240]

at SN interface. This was further experimentally explored in graphene [86, 241], graphene

nano-ribbons [242] and other topological materials [243], chiral Andreev edge states in twisted

graphene bilayer and hBN encapsulated graphene [244, 245]. S–quantum Hall junctions are

realized by contacting a high-mobility 2D system in the quantum Hall regime (e.g., graphene)

with a thin, high–critical-field superconductor (such as NbN or MoRe) that remains supercon-

ducting at several tesla [246, 247]. Transparent edge contacts enable proximity coupling to

chiral edge states, allowing supercurrent and Andreev processes to be observed in the quan-

tum Hall regime [246, 247]. We show that local potentials in quantum Hall regime that can

induce ICES (classically skipping orbits in the N region than at the Superconductor-quantum

Hall (SQH) boundaries) at the electrostatic boundaries [77, 78] that can significantly impact and

alter the Josepshson conductivity through such junctions.

In experimental systems disorder can play a role by introducing random local potential

fluctuations in the normal (quantum Hall) region, which can scatter and mix the chiral edge

states and thereby modify the Landau level structure and the Josephson conductivity [77].

The current work achieves two distinct results: a. A theoretical framework is developed to

calculate and understand this variation of conductance in ballistic regime due to induction of

ICES. This uses transfer matrices derived within BTK [79] and subsequently conductivity is

https://arxiv.org/abs/2510.11432
https://arxiv.org/abs/2510.11432


calculated using Landauer-Buttiker formula. b. The formalism is subsequently extended to a

periodically modulated SQHS JJ where a periodic potential is applied to the N regions along

with the transverse magnetic field. Given the experimental demonstration of band conductance

oscillation in graphene superlattice [248, 249], spectroscopy of fractal Hofstatder spectrum

[250] in recent work, our theoretical framework can be used to understand the impact of ICES

in junctions made with such lattice QH systems.

5.2 BdG equation for the S, B and N regions

N NNS SB B

FIG. 5.1: Schematic diagram of SNBNS junction we are considering here. The red semicircles
represent the classical electron orbits and the blue semicircles represent the classical
hole orbits.

We begin by considering a case where a finite number of identical rectangular potential barriers

with an uniform spacing between two consecutive barriers, in the N region of length 2L that

is also exposed to a strong transverse magnetic field Bẑ, in an SNS junction. The schematic

diagram of the system is shown in FIG. 5.1 . The imperfections in the SN and NS interfaces

are quantified with two delta function potentials U1δ(x − L) and U2δ(x + L). The S region

is defined as |x| > L in the unit of magnetic length l =
√

ℏ/|eB| = 25.6/
√
B nm with B

in Tesla, and energies are in the units of ℏωC . For, V (x) = ℏωCU(x), the BDG equation that

models different parts of the system in BTK formalism can be written as,





H0(x,X)− µ ∆

∆∗ µ−H0(x,−X)









fX

gX



 = E





fX

gX



 (5.1)

Here X is the guiding centre of electrons. For an uniform magnetic field B = Bẑ , in Landau

gauge the vector potential becomes, A = xBŷ in the N and B region and 0 in the S region. We

define, ν = 2µ/ℏωC . If we write the length in the units of magnetic length (l =
√

ℏ

|eB| ) and
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enrgy in the units of ℏωC , then,

H0(x,X) =
(p− eA)2

2m
+ V (x) = −1

2

d2

dx2
+ F (x,X) + U(x) (5.2)

Here,

F (x,X) =











X2

2
,in the S region

1
2
(x−X)2 ,in the N region

(5.3)

The pair potential for an NS junction can be taken as,

∆ =











∆0 ,in S region

0 ,in B and N region
(5.4)

In Sec. 2.7 of Chapter 2 we have described the breaking of time reversal symmetry in the

BdG equation which explains the term H0(x,−X) in the Hamiltonian. Now putting Eq. (5.2)

in (5.1), we get,





−1
2

d2

dx2 + F (x,+X)− ν
2
+ U(x) ∆

∆∗ ν
2
+ 1

2
d2

dx2 − F (x,−X)− U(x)









fX

gX



 = E





fX

gX





(5.5)

And, the potential U(x) can be modeled as

U(x) = U0δ(x+ L) + U0δ(x− L) +
N
∑

n=1

V0Θ

(

x− xn +
d

2

)

Θ

(

x− xn −
d

2

)

(5.6)

Without the barrier [75, 251], the solutions of this BdG equation, with the electron and hole

components of the wavefunctions denoted by fX(x) and gX(x), are defined as:
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fX = aχε+ =











aU
(

−
{

ν
2
+ E

}

,
√
2(x−X)

)

, in N

d−γ−e
ixk− + d+γ+e

−ixk+ , in S
(5.7a)

gX = bχε− =











bU
(

−
{

ν
2
− E

}

,
√
2(x+X)

)

, in N

d−e
ixk− + d+e

−ixk+ , in S
(5.7b)

Here,

k± =
[

(ν ± i2∆0)−X2
]1/2

(5.8a)

γ± =
1

(

EnX

∆0

)

∓
√

(

EnX

∆0

)2

− 1

(5.8b)

In presence of the barriers, the problem can be approached in two different ways, (i) method-

I: we take a finite number of electrostatic barriers in the N region with equal spacing between

consecutive barriers resulting in potentail profile given in Eq. (5.6)

V (x) =
N
∑

n=1

V0Θ

(

x− xn +
d

2

)

Θ

(

x− xn −
d

2

)

. (ii) method-II: In the second approach, initially the N region in the presence of transverse

magnetic field is considered to be subjected to a one dimensional periodic potential of the form

V (x) =
∞
∑

n=−∞
V0Θ

(

x− nD +
d

2

)

Θ

(

x− nD − d

2

)

so that Bloch condition can be imposed.
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5.3 Theoretical Framework of Obtaining Dispersion

5.3.1 Method - I

For an NS junction, the wavefunctions, fX and gX are shown in Eq. (5.7). The boundary value

conditions are that the wavefunctions should match at the boundary and the discontinuity of the

derivative of the wavefunction is adjusted by the delta potential(shown in Eq. (5.6)) at the SN

boundary. Using this, the boundary value conditions for the SN boundary at x = 0 is given by

a× χε+(−X) + b× 0 = d− × γ− + d+ × γ+ (5.9a)

a× 0 + b× χε−(X) = d− + d+ (5.9b)

a× |dχε+
dx

x = 0− d− × γ− × (ik−)− d+ × γ+ × (−ik+) = 2U0 (d− × γ− + d+ × γ+)

(5.9c)

b× |dχε−
dx

x = 0− d− × (ik−)− d+ × (−ik+) = 2U0 (d− + d+) (5.9d)

The coefficients of a, b, d− and d+ from this boundary value equation gives the elements of

the transfer matrix M(X)

M(X) =









χε+
(−X) 0 −γ− −γ+

0 χε−
(−X) 1 1

|dχε+
dx

x=0 0 −γ−(ik−+2U0) γ+(ik+−2U0)

0 |dχε−
dx

x=0 −(ik−+2U0) γ+(ik+−2U0)









. (5.10)

We calculate the barrier boundary conditions at x = 0, where the left side is N region and

right side is B region. Then the boundary value conditions are given by,

a× χε+(−X) + b× 0 = aB × χB,ε+(−X) + bB × 0 (5.11a)

a× 0 + b× χε−(−X) = aB × 0 + bB × χB,ε−(−X) (5.11b)

a× |dχε+
dx

x = 0 + b× 0 = aB × |dχB,ε+
dx

x = 0 + bB × 0 (5.11c)

a× 0 + b× |dχε−
dx

x = 0 = aB × 0 + bB × |dχB,ε−
dx

x = 0 (5.11d)
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This coefficients of a, b, aB and bB in the boundary value conditions Eqs. (5.11) give us the

matrix MB(X)

MB(X) =









χε+
(−X) 0 −χεB+

(−X) 0

0 χε−
(−X) 0 χεB−

(−X)

|dχε+
dx

x=0 0 |dχεB+
dx

x=0 0

0 |dχε−
dx

x=0 0 |dχεB−
dx

x=0









. (5.12)

A single potential barrier that is responsible for inserting ICES in the N region can be

written as, V (x) = V0Θ(x+ d/2)Θ(d/2− x). For this we create the transfer matrices from the

boundary conditions at every edge(SN, NB,BN and NS) as

M =

















MSN 0 0 0

0 MNB 0 0

0 0 MBN 0

0 0 0 MNS

















. (5.13)

Now the MSN and MNS are derived from M by axis transformations. For MSN the transforma-

tion is x → x + L. For MNS the transformation is x → −x− L. Now the MBN and MNB are

derived from MB by axis transformations. For MNB the transformation is x → x + d/2. For

MBN the transformation is x→ −x− d/2. The E-X dispersion is given by,

det(M) = det(MSN) det(MNB) det(MBN) det(MNS) = 0 (5.14)

This approach can be generalized for the case of n barriers in the QH region,

M =



































MSN 0 0 . . . 0 0 0

0 M
(1)
NB 0 . . . 0 0 0

0 0 M
(1)
BN . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . M
(n)
NB 0 0

0 0 0 . . . 0 M
(n)
BN 0

0 0 0 . . . 0 0 MNS



































(5.15)
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(a)

(e) (f)

(b)

Electron like state

Hole like state

(c) (d)

FIG. 5.2: We show the dispersion plots for the SNS junctions with barriers in the N region for
ν = 5.5 using Eq. (5.16). To show the presence of Landau levels, we set ∆0 =
2.0ℏωC . In (a), we have one barrier with width d = 2. In (b), (c) we have taken 4
barriers in the N region with (b) V0 = 0.2, separation D = 2 and d = 1, (c)V0 =
0.9, D = 0.5 and d = 2 and in (d) we have taken 40 barriers in the N region with
d = 0.3 and D = 0.3. The red semicircles denote the classical electron orbit, and
the blue semicircles denote the classical hole orbits. In (e) and (f), we compare the
conductivity of the SNS junction with a single barrier in the N region with two cases
of the SNS junction with w = 0 and w = 0.4 for different ranges of V0 . Here w
is defined by w = 2U0/

√
ν. In this case, we have taken ∆0 = 0.01 × ν. Here, the

distance between two SN edges is taken as 6 and the width of the barrier is taken as 1.
In the inset of (e) and (f) we show the intermediate chiral edge states which contribute
to the fluctuation in conductivity. the red and blue dot denotes their electron like or
hole like nature.

For this, the dispersion is given by,

det(M) = det(MSN)

[

∏

i=1,2...n

det
(

M
(n)
NB

)

det
(

M
(n)
BN

)

]

det(MNS) = 0 (5.16)

5.3.2 Method- II

Now we consider an large array of barrier potentials in the QH region. The wavefunctions in

n’th N region, extended from x = xn to xn +D is given by,

(f, g)nX = (a, b)nU
[(

−ν
2
± E

)

,
√
2 (x− xn ∓X)

]

(5.17)
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The wavefunctions in n’th B region, extended from x = xn +D to xn +D + d is given by,

(f, g)B,nX = (a, b)B,nU
[(

−ν
2
± E − V0

)

,
√
2 (x− xn −D ∓X)

]

(5.18)

The wavefunctions in (n+1)’th N region, extended from x = xn+D+d+D to xn+2D+2d

is given by,

(f, g)(n+1)X = (a, b)n+1U
[(

−ν
2
± E

)

,
√
2 (x− xn −D − d∓X)

]

(5.19)

Now the boundary value condition in x = xn +D gives,

anU
[(

−ν
2
+ E

)

,
√
2 (D −X)

]

= aB,nU
[(

−ν
2
+ E − V0

)

,
√
2 (−X)

]

(5.20)

bnU
[(

−ν
2
− E

)

,
√
2 (D +X)

]

= bB,nU
[(

−ν
2
− E − V0

)

,
√
2 (+X)

]

(5.21)

This boundary condition gives,





aB,n

bB,n



 =







U[(− ν
2
+E),

√
2(D−X)]

U[(− ν
2
+E−V0),

√
2(−X)]

0

0
U[(− ν

2
−E),

√
2(D+X)]

U[(− ν
2
−E−V0),

√
2(+X)]











an

bn



 (5.22)

Again the boundary value condition at x = xn +D + d gives,

aB,nU
[(

−ν
2
+ E − V0

)

,
√
2 (d−X)

]

= an+1U
[(

−ν
2
+ E

)

,
√
2 (−X)

]

(5.23)

bB,nU
[(

−ν
2
− E − V0

)

,
√
2 (d+X)

]

= bn+1U
[(

−ν
2
− E

)

,
√
2 (+X)

]

(5.24)

This boundary condition gives,





an+1

bn+1



 =







U[(− ν
2
+E−V0),

√
2(d−X)]

U[(− ν
2
+E),

√
2(−X)]

0

0
U[(− ν

2
−E−V0),

√
2(d+X)]

U[(− ν
2
−E),

√
2(+X)]











aB,n

bB,n



 (5.25)
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By combining this we get,

[

an+1
bn+1

]

=







U[(− ν
2
+E−V0),

√
2(d−X)]

U[(− ν
2
+E),

√
2(−X)]

0

0
U[(− ν

2
−E−V0),

√
2(d+X)]

U[(− ν
2
−E),

√
2(+X)]







×







U[(− ν
2
+E),

√
2(D−X)]

U[(− ν
2
+E−V0),

√
2(−X)]

0

0
U[(− ν

2
−E),

√
2(D+X)]

U[(− ν
2
−E−V0),

√
2(+X)]







[

an
bn

]

(5.26)

As we are putting a periodic potential V (x) =
∑∞

n=−∞ V0Θ
(

x− nD + d
2

)

Θ
(

x− nD − d
2

)

,

in Eq. (5.2). For an infinitely large lattice, the wavefunctions, fX and gX in Eq. (5.17) and

Eq. (5.19) satisfies the Bloch conditions. Under the bloch condition if we define the Bloch

momentums of electrons and holes as K1 and K2,

(f, g)X(x+ d+D) = (f, g)X(x)× cos(K1,2(d+D)) (5.27)

In Eq. (5.3.2), we see that the ratio of the wavefunctions are real numbers. So we put the

Bloch condition with only cosine term. Here, we have separated the electron and hole Bloch

momentum as they are decoupled in N and B region. We satisfy the Bloch condition saparately

for electron and hole part of the wavefunctions, which are stationary solutions of Eq. (5.17).

Eq. (5.27) gives,

(a, b)n+1

(a, b)n
= cos

(

K(1,2)(d+D)
)

(5.28)

Combining Eq. (5.3.2) and (5.28), we get

cos(K1(d+D)) =
U
[(

−ν
2
+ E − V0

)

,
√
2 (d−X)

]

U
[(

−ν
2
+ E

)

,
√
2 (−X)

] × U
[(

−ν
2
+ E

)

,
√
2 (D −X)

]

U
[(

−ν
2
+ E − V0

)

,
√
2 (−X)

]

(5.29a)

cos(K2(d+D)) =
U
[(

−ν
2
− E − V0

)

,
√
2 (d+X)

]

U
[(

−ν
2
− E

)

,
√
2 (+X)

] × U
[(

−ν
2
− E

)

,
√
2 (D +X)

]

U
[(

−ν
2
− E − V0

)

,
√
2 (+X)

]

(5.29b)
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Now for a large number of barriers, the allowed solutions are those (E,X) values, for which one

gets |cos(K1(d+D))| < 1 in Eq. (5.29a) and |cos(K2(d+D))| < 1 in Eq. (5.29b). Now we

have the superconducting boundaries of this lattice at x = −L and x = +L. We assume the so-

lutions are Bloch periodic inside this region. Outside the region it take the usual superconductor

wavefunction defined in (5.7a) and (5.7b).

Now, with the wavefunctions fX and gX described in Eq. (5.17) and inserting the Bloch

conditions Eq. (5.29), we use the boundary value conditions similar to Sec. 5.3. Let us calculate

the bounadry value conditions for an nth NB barrier located at xn = 0. This boundary condition

is between nth N region and n th B region. The wavefunction for this is given in Eq. (5.17) and

(5.18).

an × eiK1(n−1)(D+d)χε+(−X) + bn × 0 = aB,n × eiK1((n−1)(D+d)+d)χεB+
(−X) + bB,n × 0

(5.30)

an × 0 + bn × eiK2(n−1)(D+d)χε−(−X) = aB,n × 0 + bB,n × eiK2((n−1)(D+d)+d)χεB−
(−X)

(5.31)

an × eiK1(n−1)(D+d)|dχε+
dx

x = 0 + bn × 0 = aB,ne
iK1((n−1)(D+d)+d) × |dχB,ε+

dx

x = 0 + bB,n × 0

(5.32)

an × 0 + bn × eiK2(n−1)(D+d)|dχε−
dx

x = 0 = aB,n × 0 + bB,n ××eiK2((n−1)(D+d)+d)|dχB,ε−
dx

x = 0

(5.33)

From this we calculate the matrix M (n)
B,lat as the coefficients of an, bn, cn and dn.

Although we are considering Bloch condition, in the JJ, NS and SN interfaces breaks the

lattice translational symmetry. To introduce that aspect we assume that the Bloch condition can

be used with the following modifications. The change in the wavefunction is limited upto first n

barriers in right and left side of the N region due to the presence of SN and NS edges and inside

that the Bloch periodicity remains intact. Under this assumption, we increase n in step of 1 till

we get covergence of the energy spectrum for n and n + 1th case. This condition holds better

as one approaches the limit n/N ≪ 1, which in turn implies stronger limit of (d+D)/L≪ 1.

Unlike the method adopted by Hatsugai [252] the current scheme is not contingent upon the
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formation of magnetic Brillouin zone which is a consequence of lattice translational symmetry.

Those results can be recovered in the limit V0 → ∞, d → 0, such that V0d is finite and number

of barriers n→ ∞.

In this method, the dispersion can be obtained from,

det(M) = det(MSN)

[

∏

i=1,2...n

det
(

M
(n)
NB

)

det
(

M
(n)
BN

)

]





∏

j=1,2...(N−2n)

det
(

M
(n+j)
NB,lat

)

det
(

M
(n+j)
BN,lat

)





[

∏

k=1,2...n

det
(

M
(N−n+k)
NB

)

det
(

M
(N−n+k)
BN

)

]

det(MNS) = 0

(5.34)

5.4 Conductivity

The method of calculation of conductivity for such systems is described below.

1. Without any externally applied bias voltage, the Landau Level Andreev Bound States
(LLABS) determined from theE = 0 with the dispersion (the dotted red line in FIG. 5.2),
and the chemical potential is absorbed in filling fraction ν in the BdG equations of N and
S regions (For details see appendix) contributes to the Josephson current .

2. In Landauer-Buttiker formalism, the conductivity of this JJ can now be straight-forwarded
by summing over the hole probability as [88]

GAR =
e2

πh

n∗
∑

n=1

Bn (5.35)

where Bn =
∫

x
|gX |2 of all electron-like states staisfying

∫

x

[

|fX |2 − |gX |2
]

> 0 such
that Bn ≤ 1/2.
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(a) (b)

FIG. 5.3: In (a) we show the dispersion(energy vs guiding center) plot for an SNS junction
for the case of ν = 5.5. These are the solutions of det(MSN) det(MNS) = 0.
We denote the LLs from fX by ne and LLs from gX by nh. In (b) we show the
dispersion for the case of a single barrier present in the QH region. We have
taken ν = 2.1 and d = 2. The maroon curve shows the effective potential
Veff = (x−X)2/2 + V0Θ(−x+ d/2)Θ(x+ d/2) acting on the LLs for X = 0. The
value of the y axis in this curve is scaled appropriately to display with the dispersion
plot and the x axis is exact. The dotted red (blue) lines show the positions of the
start of the lifting of degeneracy in fX (gX) LLs due to barrier potential in the QH
region. ne and nh are the same as in (a). E(1)

b,e corresponds to the eigenvalue inside
the barrier region and we have given its coressponding expression in the text.

5.5 Dispersion of SQHS and lifting of degeneracy in disper-

sion with single barrier in the quantum Hall region

The BdG equation Eq. (5.1) in the N region decouples into following equations,

[H0(x,X)− µ] fX = EfX (5.36)

[H0(x,−X)− µ] gX = −EgX (5.37)

Wavefunctions fX and gX from Eq. (5.36) and (5.37) are the solutions of same equation

(5.36) with transformation E → −E and X → −X .

H0(x,X)fX = (E + µ)fX (5.38)

H0(x,−X)gX = −(E − µ)gX (5.39)
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In FIG. 5.3, we plot E vs X for these solutions. If we confine one dimensional electrons

like [77], we get the solutions of Eq. (5.38). However, here the presence of fX and gX give

two types of Landau levels with energies (E + µ) and −(E − µ) and underscores the effect

of Andreev refelction on the Landau levels in a SNS junction. From Eq. (5.38) and (5.39), the

n’th LL from fX and gX has energy eigenvalues, [(ne + 1/2)− ν/2] and − [(ne + 1/2)− ν/2]

respectively. In FIG. 5.3 we see the energy gap is between the states ne = 2 and nh = 2. Their

energy gap becomes ℏωC/2.

Now let us discuss the single barrier dispersion shown in FIG. 5.2 (a). For a square barrier

inside the quantum Hall region, inside the barrier H0 from Eq. (5.2) becomes,

H0(x,X) = −1

2

d2

dx2
+

1

2
(x−X)2 + V0Θ(−x+ d

2
)Θ(x+

d

2
) (5.40)

Now, the axis transformation to create theMNB (given in Eq. (5.13) in the main text) matrix,

X → X + d/2 (discussed in the main text). The boundary value conditions are discussed in

Eq. (5.11) in Sec. 5.3. Now Eq. (5.40) becomes,

H0(x,X) = −1

2

d2

dx2
+

1

2
(x−X − d

2
)2 + V0Θ(−x+ d

2
)Θ(x+

d

2
). (5.41)

As we are discussing the matrix MNB due to boundary condition at x = −d/2, (left side of

the barrier), the value of the second term in the hamiltonian becomes 1
2
(X + d)2 at x = −d/2.

We solve the eigenvalue equation and then match the boundary value conditions at x = −d/2
to obtain MNB . The dispersion relation is plotted as E vs X . The effect of the term 1

2
(X + d)2

can be seen at X = d in the dispersion plot. For a given value of energy, E, LLs of different

orders form in the neighborhood of the boundary and correspond to different values of X near

the boundary. In our case the NB boundary is at x = −d. Hence the lifting of degeneracy due

to the barrier potential are shifted in the X axis as compared to exact edges of NB boundary.

Comparing with the case of a confined quantum Hall system [77] we also see the exact location

depends on the quantum number of that LL. In FIG. 5.3 (b) we show the location where the

lifting of degeneracy occurs in the LLs. In the case considered here, d = 2. Hence we see that

this location for fX LLs occur in the neighbourhood of the point X = 2 in the dispersionn plot.

Now let us discuss the lifting of degeneracy inside the barrier region with the help of
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FIG. 5.4: Edge current, Andreev current and Supercurrent for the first three electron like LL
states.

FIG. 5.3 (b). The eigenvalues inside the barrier from Eq. (5.41) can be written as Eb,e =

[(ne + 1/2)− ν/2 + V0]. For hole states gX , the eigenvalues are,Eb,h = − [(ne + 1/2)− ν/2 + V0].

This shows that the change in eigenvalue is opposite for fX LLs and gX LLs. Due to the pres-

ence of the barrier, we now have two regions of degenerate states, (i) inside the barrier and

(ii) outside the barrier. The boundary condition allows the energy to continuously change from

[(ne + 1/2)− ν/2] to [(ne + 1/2)− ν/2 + V0] and form intermediate chiral edge states. The

same analysis can be done for the gX LLs and their direction is opposite to the fX LLs in the

dispersion plot.

5.6 Distribution of various current components

The total quasiparticle charge current in the superconductor-quantum Hall juctions is given by

[75]

I
(Q)
X = I

(Q,n)
X − I

(Q,a)
X + I

(Q,s)
X . (5.42)

This current captures the contribution from the currect carrying edge states (normal re-

flection) and Andreev reflection in such junctions. It has three components which composes

ordinary edge current I(Q,n)
X , Andreev reflection contribution (I(Q,a)

X ) and Supercurrent (I(Q,s)
X ).
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I
(Q,n)
X =

el2

ℏLy

∂E

∂X
(5.43a)

I
(Q,a)
X =

el2

ℏLy

∂E

∂X
2

∫

x

|gx(x)|2 (5.43b)

I
(Q,s)
X =

el2

ℏLy

2∆

∫

x

Θ(−x)
[

g∗X
dfX
dX

− f ∗
X

dgX
dX

]

(5.43c)

(a) (b)

FIG. 5.5: In (a), we show the charge current for an SNS junction with two barriers of d = 4
and D = 4. In (b), we show the charge current for d = 4 and D = 4 in an NS junc-
tion with two barriers in the N region.

In FIG. 5.5 (a) and (b) we show the charge current as a function of the guiding center demon-

strating how with the reduction of the separation between barriers the current contribution due

to LLs of a given quantum number interfere.

5.7 Analysis of the Dispersion and the Conductivity Plots

Now, in light of the above discussion we shall analyze the dispersion and the conductivities

we calculated from Method-I and shown in FIG. 5.2. In FIG. 5.2 (a) -(d), using (5.16) we

show the E vs X we dispersions for (a) single barrier with width d = 2, (b) four barriers with

d = 1, separation D = 2 and V0 = 0.2, (c)four barriers with d = 2, separation D = 0.5

and V0 = 0.9 and (d) 40 barriers with separation D = 0.3 and d = 0.3, with all barrier(s)

placed symmetrically inside the QH region. The formation of the ICES and their variation

in the electron and hole LLs in these figures are described in detail in Sec. 5.5 with the help

of FIG. 5.3 (a) and (b). Comparison of FIG. 5.2(a) and (b) shows that the addition of more

electrostatic barriers in the QH region increases the number intermediate chiral edge states

inside the QH region. The intermediate chiral edge states form a convexo-concave structure

over the usual LLs over a range of X . In (c) we reduced separation between the barriers D, and

also increased the value of V0. The increase in V0 results in overlapping of convexo-concave

(CC) structures from different LLs (inter LL overlap), whereas reduced D leads to overlapping
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of the adjacent CC structures in the same LLs (intra LL overlap). As we see this deeply effect

the subsequent LL band formation, when number of barriers are large.

In (d) , a relatively large number of barriers n = 40 in the QH region lead to the forma-

tion of LL bands due to inter and intra-LL overlap of the CC regions in the dispersion. The

interband region also contains states. This situation may be compared with the seminal work

by Hatsugai [252] with two fundamental differences (a) broken lattice translational symmetry

by NS interface and (b) electron hole conversion due to Andreev reflection. As a result even

though the Landau bands are clearly formed the width of the bands and the states in between

such bands are very different from that of an unbounded QH system in a one dimensional lattice

under tight-binding approximation.

Finally, in (e) and (f) we plot the variation of Josephson conductivity as a function of filling

fraction ν
2

calculated with the help of Eq. (5.35).

In (e), particularly we plot conductance for the cases of S-QH-S junctions (i) without any

barrier, (ii) delta function barriers at the NS edges which affect the Andreev reflection and then

(iii) scatterer in the form of one rectangular barrier symmetrically placed in the QH region

which introduces ICES. In the inset we show the existence of the ICES at the Fermi energy, and

its effect on the conductivity.

We also provide the tables for some of the insets in TABLE 5.1, 5.2 and 5.3.

n Bn

1 0.471016
2 0.499073
3 0.502286
4 0.365599
5 0.497525
6 0.500802
7 0.0704867
8 0.528958

Table 5.1: Hole probabilities of ν = 5.31

n Bn

1 0.465506
2 0.500595
3 0.501658
4 0.498537
5 0.499180
6 0.534521

Table 5.2: Hole probabilities of ν = 5.41

In FIG. 5.2 (f) we have studied joint effect of delta function scatterer at the NS edge and

a symmetrically placed rectangular barrier in the QH region, on the Jospephson conductance

of the SQHS junction. Additionally the height of the barrier V0 is increased as compared to

FIG. 5.2(g). Pronounced change in the conductance was observed.
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FIG. 5.6: In (a), (b), (e) and (f) we show the dispersion plot for SN(BN)nS junction with
n = 30. For (a) ν/2 = 2.75 and V0 = 0.2, (b) ν/2 = 2.75 and V0 = 0.8, (e)
ν/2 = 1.125 and V0 = 0.2 and (f) ν/2 = 1.125 and V0 = 0.8. The with of the
barriers are taken as d = 0.3 and the separation between them is taken as D = 0.3.
In (c) and (d) we show the conductivity, calculated using Eq. (5.35) as a function of
both V0 and ν/2. The x axes of the dispersion plots (a), (b), (e) and (f) are X and
the y axes are energy E. The E vs X dispersions (a), (b), (e) and (f) correspond to 4
points A, B , E and F in the conduction plots (c) and (d). For the dispersion we have
taken ∆ = 2 and the conduction plots we have taken ∆ = 0.01ν. The dispersion
plots are calculated with same values of ν and V0. However as we have changed the
∆ for the conductance calculation the window of energy in which Andreev bound
states are formed get reduced to −0.01ν to +0.01ν.
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n Bn for ν/2 = 3.555 Bn for ν/2 = 3.605 Bn for ν/2 = 3.655

1 0.50275 0.48505 0.47407
2 0.49439 0.49630 0.49795
3 0.50486 0.50405 0.50315
4 0.49543 0.49607 0.49661
5 0.50456 0.50418 0.50339
6 0.00230 0.00004 0.07291
7 0.49509 0.49586 0.49669
8 0.50566 0.58670 0.50193
9 0.48991 0.50387 0.32144

10 0.49729 0.51516 0.52569

Table 5.3: Hole probabilities of ν/2 = 3.555, 3.605 and 3.655 for the inset of FIG. 5.2(e).

To gain more insight in the modification of Jospephson conductivity due to the existence

of such ICES and the consequent LL band formation, in FIG. 5.6 (c) and (d) we study the

variation of conductace due to multiple equidistant rectangular barriers again symmetrically

placed in the QH region over a range of ν and V0. To elucidate the resulting behavior further,

we the dispersion relation in (a), (b), (e) and (f) which correspond’s to four specific points in

the V0, ν plane. We can observe strong Josephson conductance fluctuations over the plataues.

The fluctuation is due the formation of Landau bands due to intra and inter LL overlap of ICES.

For lower value of V0 (a) and (e) it is almost due to intra LL overlap of the ICES There are

large gaps between the bands and clear edge states between the bands somewhat similar to the

case studied by [252], (ii) in (b) and (f) the LL bands are more complex and accompanied by

additional inter LL overlapping of ICES that mixes different quantum numbers corresponding

to particle and hole. This is very different from the previous case, and also contains a significant

number of intermediate states between two bands. More detailed discussion is given in Sec. 5.5

with FIG. 5.3. The two different mechanism of formation of LL bands due to intra and inter

LL overlap of ICES injected by array of rectangular barrier potentials and the modification of

Josephson conductivity in S-QH-S junction is one of most important findings of this work.

5.7.1 Comparison of the transfer matrix method with and without Bloch

Condition

We have also compared the results obtained from Method-I and Method-II to check the lattice

effects. We have compared the number of points in the E vs X dispersion plots (bound states)
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for different values of n using both methods. In FIG. 5.7 we show that as we change n, for large

lattices the number of bound states start showing convergence towards the result obtained from

Method-I. This shows both methods provide same result for large lattices. Unlike the method

adopted by Hatsugai [252] the current scheme is not contingent upon the formation of magnetic

Brillouin zone which is a consequence of lattice translational symmetry.
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FIG. 5.7: The number of points in the E-X dispersion plots (bound states) obtained from the
method II Eq. (5.34) for the case of N = 24, 40 and 60. The solid line denotes the
fitted curve. The last points in each curve is where we do not have Bloch condition
at all. This is same as the results obtained using Method-I.

5.8 Graphene based superconductor- quantum Hall- super-

conductor junctions

Now inspired by the earlier problem, here we study the effect of external electrostatic barrier

potential on monolayer graphene based Josephson junctions [29, 83, 86]. The regions |x| > L

are covered by superconducting electrodes similar to what we consider in Chapter 4. Due to

proximity effect these regions become two-dimensional superconductors [41, 83, 188]. The

graphene region |x| < L is exposed to uniform magnetic field [10]. The graphene LLs are

different from non-relativistic system due to its linear dispersion. We shall see from the solu-

tions discussed from the subsequent sections that the graphene LLs are not equispaced in the

energy. The external potential can be constructed using a gate potential in graphene similar to

the non-relativistic two-dimensional system discussed earlier.
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5.8.1 DBdG equation

In Chapter 2, we have discussed how the usual BdG equation gets transformed in the presence

of magnetic field and electrostatic potential. Eq. (4.12) in 2.7 shows the DBdG equation in such

system,





vF τ0 ⊗ (p+ eA) · σ + V (x)− µ ∆

∆∗ µ− vF τ0 ⊗ (p− eA) · σ − V (x)









Ψe

Ψh



 = ε





Ψe

Ψh





(5.44)

5.8.2 Solution in the G Region

In the absence of any external potential, G region the DBdG equation becomes,





vF τ0 ⊗ (p+ eA) · σ − µ 0

0 µ− vF τ0 ⊗ (p− eA) · σ









Ψe

Ψh



 = ε





Ψe

Ψh



 (5.45)

Here the wavefunctions contain Ψe and Ψh, a pair of four dimensional vectors, which rep-

resent the electron and hole excitaion. If we choose Ψe and Ψh as Ψe = (ψe1, ψe2, ψe3, ψe4) and

Ψh = (ψh1, ψh2, ψh3, ψh4), then from Eq. (5.45), we can write

















−µ vF (πx − iπy) 0 0

vF (πx + iπy) −µ 0 0

0 0 µ −vF (π̄x − iπ̄y)

0 0 −vF (π̄x + iπ̄y) µ

































ψe1

ψe2

ψh1

ψh2

















= ε

















ψe1

ψe2

ψh1

ψh2

















(5.46)

and,
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















−µ vF (πx − iπy) 0 0

vF (πx + iπy) −µ 0 0

0 0 µ −vF (π̄x − iπ̄y)

0 0 −vF (π̄x + iπ̄y) µ

































ψe3

ψe4

ψh3

ψh4

















= ε

















ψe3

ψe4

ψh3

ψh4

















(5.47)

Let us first start with Eq. (5.60), the electron and hole parts of this equation can be decou-

pled. From the electron part,

−µψe1 + vF (πx − iπy)ψe2 = εψe1 (5.48a)

vF (πx + iπy)ψe1 − µψe2 = εψe2 (5.48b)

In case of uniform magnetic field, we have,

A =











Bxŷ , G region

0 , S region
(5.49)

If we take ky = X
l2

, then from Eq. (5.48), we get,

[

p̂x
2 + ℏeB +

(

ℏ
X

l2
+ eBx

)2
]

ψe1 =

(

ε+ µ

vF

)2

ψe1 (5.50)

Now,
(

ℏ
X
l2
+ eBx

)

=
√
ℏeB

[

X
l
+ x

l

]

, where, l =
√

ℏ

eB
is the magnetic length. If we now

measure length in the units of l and energy in the units of ℏvF/l,

x→ xl

X → Xl

(ε+ µ) → (ε+ µ)× ℏvF
l
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This makes Eq. (5.50) and the corresponding equation of ψh1 describing the hole part,

[

−1

2
∂2x +

1

2
(x+X)2

]

ψe1 =
1

2

[

(µ+ ε)2 − 1
]

ψe1 (5.51a)

[

−1

2
∂2x +

1

2
(x−X)2

]

ψh1 =
1

2

[

(µ− ε)2 − 1
]

ψh1 (5.51b)

The solutions of ψe1 from Eq. (5.51a) of this equation is

ψe1 = −i (ε+ µ) e−
1

2
(x+X)2H 1

2
(ε+µ)2−1(x+X) (5.52)

ψe2 = e−
1

2
(x+X)2H 1

2
(ε+µ)2(x+X) (5.53)

The wavefunctions in the G region is written as,

Ψ(x, y) = eikyy





Ce ⊗ Φe(x+X)

Ch ⊗ Φh(x−X)



 (5.54)

where,

Φe(ξ) = e−(1/2)ξ2





−i(µ+ ε)H 1

2
(ε+µ)2−1(ξ)

H 1

2
(ε+µ)2(ξ)



 (5.55)

Φh(ξ) = e−(1/2)ξ2





H 1

2
(µ−ε)2(ξ)

−i(µ− ε)H 1

2
(µ−ε)2−1(ξ)



 (5.56)

If we restrict our calculation to single valley, then the wavefunction Ψ(x, y) =
[

ψe1 ψe2 ψh1 ψh2

]T

has two solutions in the graphene region.

ΨG1(x, y) = eikyye−(1/2)(x+X)2

















−i(µ+ ε)H 1

2
(ε+µ)2−1(x+X)

H 1

2
(ε+µ)2(x+X)

0

0

















(5.57a)
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ΨG2(x, y) = eikyye−(1/2)(x−X)2

















0

0

H 1

2
(µ−ε)2(x−X)

−i(µ− ε)H 1

2
(µ−ε)2−1(x−X)

















(5.57b)

From Eq. (5.51a), we see that we have solution for this wavefunction for half integer values

of 1
2
[(µ+ ε)2 − 1],

1

2

[

(µ+ ε)2 − 1
]

= ne +
1

2
(5.58)

Here, ne = 0, 1, 2, ...

Similarly from Eq. (5.51b), we see that we have solution for this wavefunction for half

integer values of 1
2
[(µ− ε)2 − 1],

1

2

[

(µ− ε)2 − 1
]

= nh +
1

2
(5.59)

Here, nh = 0, 1, 2, ...

This shows that for every value of ne and nh we have two values of energy. Earlier for the

case of non-relativistic two-dimensional electronic system discussed in Sec. 5.5, we had one

energy for every values of ne and nh. This is a consequence of graphene’s linear dispersion.

5.8.3 Solution in the Barrier region

In the earlier calculation of S-QH-S junctions in non relativistic two dimensional electronic

system, we had taken the barrier potential in the units of ℏωC . Here we take the energies in

the units of ℏvF
l

. We have also scaled the external scattering potential accordingly. If we put a

electrostatic potential barrier of height V0 in the graphene region, then we can write the DBdG

equation as
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















V0 − µ vF (πx − iπy) 0 0

vF (πx + iπy) V0 − µ 0 0

0 0 µ− V0 −vF (π̄x − iπ̄y)

0 0 −vF (π̄x + iπ̄y) µ− V0

































ψe1

ψe2

ψh1

ψh2

















= ε

















ψe1

ψe2

ψh1

ψh2

















(5.60)

The counterparts of equations (5.51) becomes,

[

−1

2
∂2x +

1

2
(x+X)2

]

ψe1 =
1

2

[

(µ+ ε− V0)
2 − 1

]

ψe1 (5.61a)

[

−1

2
∂2x +

1

2
(x−X)2

]

ψh1 =
1

2

[

(µ− ε− V0)
2 − 1

]

ψh1 (5.61b)

With this, the modified solutions in this region become,

ΨB1(x, y) = eikyye−(1/2)(x+X)2

















−i(µ+ ε− V0)H 1

2
(ε−V0+µ)2−1(x+X)

H 1

2
(ε−V0+µ)2(x+X)

0

0

















(5.62a)

ΨB2(x, y) = eikyye−(1/2)(x−q)2

















0

0

H 1

2
(µ−V0−ε)2(x− q)

−i(µ− V0 − ε)H 1

2
(µ−V0−ε)2−1(x− q)

















(5.62b)

In the superconducting region, we can write
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















−µ− U0 vF (px − ipy) ∆0e
iΦ 0

vF (px + ipy) −µ− U0 0 ∆0e
iΦ

∆0e
−iΦ 0 µ+ U0 −vF (px − ipy)

0 ∆0e
−iΦ −vF (px + ipy) µ+ U0

































ψe1

ψe2

ψh1

ψh2

















= ε

















ψe1

ψe2

ψh1

ψh2

















(5.63)

Again, from Eq. (5.61a) and (5.61b), we have solutions for,

1

2

[

(µ+ ε− V0)
2 − 1

]

= ne +
1

2
and

1

2

[

(µ− ε− V0)
2 − 1

]

= nh +
1

2
(5.64)

5.8.4 Solution in Superconducting Region

Here, Φ is the superconducting phase. The possible solutions in the regime of U0 + µ ≫ ∆0, ε

are given by

ψS1(Φ) = eikyy+ikox−kix

















eiβ

eiβ+iγ

e−iΦ

e−iΦ+iγ

















, (5.65a)

ψS2(Φ) = eikyy+ikox+kix

















e−iβ

e−iβ+iγ

e−iΦ

e−iΦ+iγ

















, (5.65b)

ψS3(Φ) = eikyy−ikox−kix

















e−iβ

−e−iβ−iγ

e−iΦ

−e−iΦ−iγ

















, (5.65c)
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ψS4(Φ) = eikyy−ikox+kix

















eiβ

−eiβ−iγ

e−iΦ

−e−iΦ−iγ

















. (5.65d)

where,

β =







cos−1
(

ε
∆o

)

if ε < ∆o

−i cosh−1
(

ε
∆o

)

if ε > ∆o

(5.66)

γ = sin−1

[

ℏvFky
Uo + µ

]

(5.67)

ko =

√

(

Uo + µ

ℏvF

)2

− k2y (5.68)

ki =
(Uo + µ)∆o

ℏ2v2Fko
sin β (5.69)

In the regime of |ky| ≤ µ
ℏvF

and if we take Uo ≫ µ, ε then, γ → 0, ko → Uo

ℏvF
and

ki → ∆o

ℏvF
sin β. In the region x < 0, (i.e.,left superconductor), the wavefunction is Ψl =

a1ψ2(ϕ1) + a2ψ4(ϕ1). In the region x > L, (i.e.,right superconductor) the wave-function is

Ψr = b1ψ1(ϕ2) + b2ψ3(ϕ2).

5.8.5 Boundary Value Condition

The transfer matrices are calculated using boundary value conditions in the same method we

used earlier in set of equations Eq. (5.9) and (5.11) in Sec. 5.3. We match the wavefunctions

Eq. (4.16) and (5.57)at the SG interface to get MSG, the wavefunctions Eq. (5.57) and (5.62)

at the GB interface to get MGB, the wavefunctions Eq. (5.62) and (5.57) at the BG interface to

get MBG and the wavefunctions Eq. (5.57) and (4.16) at the GS interface to get MGS . Now we

construct the transfer matrix similar to Eq. (5.13)

97



(a) (b) (c)

FIG. 5.8: (a) The dispersion of the monolayer graphene based SQHS junction with the sepa-
ration between the two superconductors 2L = 8, µ = 0.4 and superconducting gap
∆0 = 10. Here we have measured the lengths in the units of magnetic length l and
energies in the units of ℏvF

l
. In (b) and (c) we show the dispersion for the same system

when the electrostatic barrier of height (b) V0 = 0.2 and (c) 2 is present in the QH
region.

M =

















MSG 0 0 0

0 MGB 0 0

0 0 MBG 0

0 0 0 MGS

















. (5.70)

We are not providing the explicit form of these matrices. As the graphene wavefunctions

have four component, all the matrices in Eq. (5.70) are (4 × 4) matrices. The E - q dispersion

in this case is given by

det(M) = det(MSG)det(MGB)det(MBG)det(MGS) = 0 (5.71)

In FIG. 5.8, we show the dispersion which we obtained from the dispersion relation Eq. (5.71).

In Eq. (5.71) (a) first we show the dispersion when the potential barrier is absent. We have

marked the electron states n+
e and n−

e and hole states n+
h and n−

h . The + and − sign represent

two solutions obtained from each value of ne and nh. In FIG. 5.8 (b) and (c) we show the dis-

persion when the barrier potential is present. The height of the barriers is taken as (b) V0 = 0.2

and (c) V0 = 2.
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5.9 Conclusion and Future Scope

In this chapter we developed a transfer matrix based theoretical framework to study the effect

of electrostatically defined barrier potential on a superconductor-quantum hall-superconductor

junction(SQHS) Josephson junction. We studied both non-relativistic two dimensional electron

system and graphene based SQHS junctions which show two different types of Landau Levels

due to their different nature of dispersion. For the case of non-relativistic two dimensional

electron system, we identified intermediate chiral edge states (ICES) which occur due to the

presence of the barrier and identified its contribution to the Josephson conductivity. We have

also extended our analysis to include the lattice effect when a large array of external barriers are

present in the QH region. In graphene based SQHS junction we have obtained the dispersion.

The framework we developed can also be extended for the case of graphene.
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CHAPTER 6

Conclusions

This thesis has examined three interconnected problems in the scattering and transport of

massless Dirac fermions (MDFs) in graphene and hybrid superconducting systems. Across

these problems, we demonstrated how external electrostatic, magnetic, and periodic potentials

provide powerful means of controlling electron dynamics, and established connections to optics,

superconductivity, and quantum Hall physics.

In Chapter 3, based on [44], we studied the scattering of MDFs from two-dimensional

quantum dot lattices (TDQDL). Using the Lippmann–Schwinger formalism in the first Born

approximation, we showed that the differential scattering cross-section is proportional to the

Fourier transform of the scattering potential, drawing a close analogy with Fraunhofer diffrac-

tion in optics [27]. While direct image reconstruction, as in optical Fourier optics, is not possible

in graphene, we introduced the rotation angle between the incident wave and lattice symmetry

as an additional degree of freedom. Analysis of angle-resolved dc-resistivity revealed that struc-

tural features such as lattice symmetry, defects, and moiré patterns leave distinct signatures in

the resistivity spectrum. These results suggest a pathway toward electronic analogues of image

processing and pattern recognition using graphene. Also, our work is first to show fractional

Fourier transform in condensed matter system.

In Chapter 4, reported in [45], we investigated graphene-based Josephson junctions incor-

porating one-dimensional electrostatic and magnetic barriers as the weak link between super-

conducting electrodes. Josephson junctions are fundamental to superconducting electronics,

providing dissipationless current flow that underpins applications from SQUID magnetometry

to superconducting qubits [81, 82]. Using the Dirac–Bogoliubov–de Gennes (DBdG) formalism

[29, 83], we showed that barrier regions act as tunable refractive index media for MDFs, with

barrier strengths controlling the Andreev reflection process. With this our system show con-

densed matter analogues of both reflection and refraction in a two-dimensional system. This

tunability directly modulates the Josephson current, demonstrating a mechanism for externally

controlling superconducting transport in graphene-based devices.



In Chapter 5, we studied the effect of external electrostatic potential on superconductor–

quantum Hall–superconductor (SQHS) Josephson junctions, where Landau quantization dom-

inates the electronic states [75]. We developed a transfer-matrix framework and showed that

local electrostatic barriers generate intermediate chiral edge states (ICES) [77, 78], which pro-

vide new current-carrying channels and significantly modify Josephson transport. Analysis of

non-ideal interfaces further highlighted the sensitivity of transport to scattering, while extending

the model to periodically modulated junctions revealed additional routes for controlling conduc-

tivity. These results emphasize the rich interplay between superconductivity and quantum Hall

physics in hybrid graphene systems. We have studied both non-relativistic two-dimensional

electron system and monolayer graphene based SQHS junctions. Due to their dispersion the

nature of Landau levels show the signatures of these two systems.

Together, Chapters 4 and 5 demonstrate the versatility of Josephson junctions as platforms

for engineering superconducting transport in graphene. In Chapter 4, we showed that barrier

engineering allows direct control over Josephson current, while in Chapter 5 we revealed how

hybrid superconducting–quantum Hall junctions support novel current-carrying states. Both

studies show the central role of Josephson junctions not only in fundamental physics but also in

potential applications ranging from superconducting logic to quantum information processing.

In conclusion, this thesis demonstrates that the scattering of massless Dirac fermions in

modulated graphene junctions controlled through engineered external electromagnetic poten-

tials open up several possibilities of device application. The optical analogy of Chapter 3 illus-

trates how transport can reveal structural properties; the Josephson junction studies in Chapters

4 shows how barriers provide experimental knobs for controlling supercurrent; and the Chapters

5 highlights the emergence of novel edge states in hybrid systems. Beyond advancing theoreti-

cal understanding, these results point to practical routes for graphene-based electronic imaging,

superconducting device engineering, and quantum transport applications, bridging the gap

between fundamental condensed matter physics and emerging quantum technologies.
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